Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 4 | 1677--1686
Tytuł artykułu

Comparing measurement correction of echo sounder in shallow-water area

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Error correction of echo sounder is very important for the accurate measurement of water-depth in shallow-water area. There are some issues in measuring the water depth, they are accuracy, resolution, inaccurate beamwidth of transmit and can be solved by the existing methodologies. In this article, comparing measurement is an efficient method for error correction of echo sounder. The most commonly used comparing methods are sounding poles, plumb-lines and thermohaline methods. However, the sounding poles method can only measure the water-depth less than 5 m as its limited by the length of measuring poles; the plumb-lines method cannot guarantee the accuracy of water-depth value as its difficult to determine whether the plumb-line falls vertically onto the water floor or into the underwater sediment; the thermohaline methods is time-consuming as its need lots of the temperature and salinity information for the correction of sound velocity. Based on these knowledge and experience, we put forward a comparator for comparing measurement of water-depth, which could adjust sound velocity of echo sounder for precisely measure actual water-depth of the survey area without complicated thermohaline correction work. The comparator method has practical implications for the quick error correction of echo sounder survey in shallow water area. The experimental results predict that the mistakes are easily caused by the complicated correction work which can be avoided and establishes that the water-depth measurement is more efficient.
Wydawca

Czasopismo
Rocznik
Strony
1677--1686
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • South China Sea Institute of Planning and Environmental Research, SOA, Guangzhou 510300, People’s Republic of China, zzory@126.com
autor
  • South China Sea Bureau, Ministry of Natural Resources, Guangzhou 510300, People’s Republic of China, jsy1234567898@163.com
autor
  • South China Sea Institute of Planning and Environmental Research, SOA, Guangzhou 510300, People’s Republic of China, zengweizhu2020@163.com
Bibliografia
  • 1. Bu X, Mei S, Yang F, Luan Z, Xu F, Luo Y (2021) A precise method to calibrate dynamic integration errors in shallow-and deep-water multibeam bathymetric data. IEEE Trans Geosci Remote Sens
  • 2. Designing Institute of Water Transport Planning of Ministry of Transport (1987) Port Engineering Technical Specification 1987, vol 1988. Beijing: People's Communications Press, p 204
  • 3. Dewi RS, Rizaldy A (2021) Accuracy assessment of satellite derived bathymetry model for depth extraction in sorong shallow water area. In: IOP conference series: earth and environmental science, vol 925, no. 1. IOP Publishing, p. 012053
  • 4. Gao JH, Shi Y, Sheng H et al (2019) Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations. Mar Geol 414:1–17
  • 5. Jiang SY (2008) Comparator of water depth measurement: China, ZL (20204755.3. 2008-02-02)
  • 6. Jiang C, Pan S, Chen S (2017) Recent morphological changes of the Yellow River (Huanghe) submerged delta: causes and environmental implications. Geomorphology 293:93–107
  • 7. Li G, Xu K, Xue Z G et al (2020) Hydrodynamics and sediment dynamics in Barataria Bay, Louisiana, USA. Estuarine Coastal and Shelf Science, p 249
  • 8. Lu X, Feng C, Ma Y et al (2019) Calibration method of rotation and displacement systematic errors for ship-borne mobile surveying systems. Surv Rev 51(364):78–86
  • 9. Menandro PS, Bastos AC (2020) Seabed mapping: a brief history from meaningful words. Geosciences (switzerland) 10(7):273
  • 10. Patel A, Katiyar SK, Prasad V (2021) Bathymetric mapping for shallow water using landsat 8 via artificial neural network technique. In: Recent trends in civil engineering. Springer, Singapore, pp. 717–733
  • 11. Picard K, Brooke BP, Harris PT et al (2018) Malaysia airlines flight MH370 search data reveal geomorphology and seafloor processes in the Remote Southeast Indian Ocean. Mar Geol 395:301–319
  • 12. Rajput P, Ramakrishnan R, Francis S, Thomaskutty AV, Agrawal R, Rajawat AS (2021) Investigating shallow water bottom feature using SAR data along Gulf of Khambhat, India. Remote Sens Appl Soc Environ 23:100592
  • 13. Ranndal H, Sigaard Christiansen P, Kliving P, Baltazar Andersen O, Nielsen K (2021) Evaluation of a statistical approach for extracting shallow water bathymetry signals from ICESat-2 ATL03 photon data. Remote Sensing 13(17):3548
  • 14. Yang L, Liu F, Gong W et al (2019) Morphological response of Lingding Bay in the Pearl River Estuary to human intervention in recent decades. Ocean Coast Manag 176:1–10
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1712998f-5b83-4d29-8677-9c467b21f501
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.