Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 30, Iss. 1 | 86--93
Tytuł artykułu

Investigation of the effects of machining parameters on cutting conditions during orthogonal turning of austenite stainless steel

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The 1.4306 austenite stainless steel has been prominently utilized as a material in the automotive and aerospace industry. Considerable interest has been garnered in the machinability of stainless steel owing to its high strength and poor thermal conductivity. The aim of this study is to ascertain the influential cutting parameters, specifically the cutting speed and feed rate, on cut-ting forces, cutting temperature, and chip evaluation. Thus, austenite stainless steel was subjected to free-cutting using a carbide recessing tool under dry conditions. The principle of measuring cutting temperature, a complex procedure due to varying thermal homogeneity, was elucidated. For the turning experiments in question, the standard Taguchi orthogonal array L9 (32 ), featuring two factors and three levels, was employed. The experimental results were analyzed using MiniTab 17 software. The findings reveal a substantial effect of feed rate on cutting force, cutting temperature, and chip evaluation. The highest cutting force and cutting temperature were observed at a feed rate of 0.15 mm/rev. Conversely, the cutting force was minimized at a cutting speed of 100 m/min, indicating potential for increasing the cutting speed. The augmentation of feed rate led to chip compression and discoloration, attributed to elevated cutting force and a larger chip cross-section that efficiently dissipates heat from the cutting zone
Wydawca

Rocznik
Strony
86--93
Opis fizyczny
Bibliogr. 27 poz,. rys., tab.
Twórcy
  • GAMF Faculty of Engineering and Computer Science, Department of Innovative Vehicles and Materials, John von Neumann University, Izsáki út 10., H-6000 Kecskemét, Hungary, konya.gabor@nje.hu
  • Faculty of Transportation Engineering and Vehicle Engineering, Department of Automotive Technologies, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary, takacs.janos@kjk.bme.hu
  • GAMF Faculty of Engineering and Computer Science, Department of Innovative Vehicles and Materials, John von Neumann University, Izsáki út 10., H-6000 Kecskemét, Hungary
  • miskolczi.istvan@nje.hu
  • GAMF Faculty of Engineering and Computer Science, Department of Innovative Vehicles and Materials, John von Neumann University, Izsáki út 10., H-6000 Kecskemét, Hungary, kovacs.zsolt@nje.hu
Bibliografia
  • 1. Acayaba, G. M. A., de Escalona, P. M., 2015. Prediction of surface roughness in low speed turning of AISI316 austenitic stainless steel. CIRP Journal of Manufacturing Science and Technology, 11, 62-67, DOI: 10.1016/j.cirpj.2015.08.004.
  • 2. Bharasi, N. S., Pujar, M.G., Das, C.R., Philip, J., Thyagarajan, K., Paneerselvi, S., Moitra, A., Chandramouli, S., Karki, V., Kannan, S., 2019. Microstructure, corrosion and mechanical properties characterization of AISI type 316L(N) stainless steel and modified 9Cr-1Mo steel after 40,000 h of dynamic sodium exposure at 525 °C.Journal of Nu-clear Materials, 516, 84-99, DOI: 10.1016/J.JNUCMAT.2019.01.012
  • 3. Buranská, E., Buranský, I., Kritikos, M., Gerulová, K., Líška, J., (2019). Cutting Environment Impact on the Aluminium Alloy Machining, Vedeckee Prace Materialovotechnologickej Fakulty Slovenskej Technickej Univerzity V Bratislave So Sidlom V Trnave. 27(44), 21-28, DOI: 10.2478/rput2019-0002
  • 4. Dömötör, F., Vehovszky, B., Weltsch, Z., Németh, Sz., Terpó, Gy., 2013. Complex Process Monitoring of Cutting Hybrid Metal Structures. Periodica Polytechnica Transportation Engineering, 41(2), 87-94, DOI: 10.3311/PPtr.7107
  • 5. Ezugwu, E.O., Wang, Z.M., 1997. Titanium alloys and their machinability - a review. Journal of Materials Processing Technology, 68(3), 262-274, DOI: 10.1016/S0924-0136(96)00030-1
  • 6. Freddi, A., Salmon, M., 2019. Introduction to the Taguchi Method, Design Principles and Methodologies. Springer Tracts in Mechanical Engineering, Springer, Cham.
  • 7. Gerth, J., Gustavsson, F., Collin, M., Andersson, G., Nordh, L.-G., Heinrichs, J., Wiklund, U., 2014. Adhesion phenomena in the secondary shear zone in turning of austenitic stainless steel and carbon steel. Journal of Materials Processing Technology, 214(8), 1467-1481, DOI: 10.1016/ J.JMATPROTEC.2014.01.017
  • 8. Gökkaya, H., Nalbant, M., 2007. The effects of cutting tool geometry and processing parameters on the surface roughness of AISI 1030 steel. Materials & Design, 28(2), 717-721, DOI: 10.1016/j.matdes
  • 9. Kónya, G., Kovács, Z. F., 2023. The Comparison of Effects of Liquid Carbon Dioxide and Conventional Flood Cooling on the Machining Conditions During Milling of Nickel-based Superalloys. Periodica Polytechnica Mechanical Engineering, DOI: 10.3311/PPme.222
  • 10. Kónya, G., Kovács, Zs. F., Kókai, E., 2022. Milling of Nickel-based superalloy by Trochoidal Strategies, 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics. Automation, Computer Science and Robotics (CINTI-MACRo), Targu-Mures, Romania, 1-6.
  • 11. Kovács, Z. F., Viharos, Z. J., Kodácsy, J., 2022. Improvements of surface tribological properties by magnetic assisted ball burnishing. Surface and Coatings Technology, 437, 128317, DOI: 10.1016/j.surfcoat.2022.128317
  • 12. Krolczyk, G. M., Nieslony, P., Legutko, S., 2015. Determination of tool life and research wear during duplex stainless steel turning. Archives of Civil and Mechanical Engineering, 15(2), 347-354, DOI: 10.1016/J.ACME.2014.05.001/METRICS
  • 13. Kulkarni, A. P., Joshi, G. G., Karekar, A., Sargade, V. G., 2014. Investigation on cutting temperature and cutting force in turning AISI 304 austenitic stainless steel using AlTiCrN coated carbide insert. International Journal of Machining and Machinability of Materials, 15(3-4), 147-156, DOI: 10.1504/IJMMM.2014.060546
  • 14. Kun, K., Kodácsy, J., Vaczkó, D., Kovács, Zs. F., 2019. Machinability of Nibased Superalloys by Indexable End Mills. Acta Materialia Transylvanica, 2(1), 49-54, DOI: 10.33924/amt-2019-01
  • 15. Leksycki K., Maruda, R. W., Feldshtein, E., Wojciechowski, S., Habrat, W, Gupta, M. K., Królczyk, G. M., 2023. Evaluation of tribological interactions and machinability of Ti6Al4V alloy during finish turning under different cooling conditions. Tribology International, 189, 109002, DOI: 10.1016/j.triboint.2023.109002
  • 16. Móricz, L., Viharos, Z. J., 2022. Investigation of ductile/brittle chip formation zone in the context of manufactured geometry with different CAM paths strategies. IFAC-PapersOnLine, 55(10), 2300-2305, DOI: 10.1016/ j.ifacol.2022.10.051
  • 17. Nalbant, M., Gökkaya, H., Sur, G., 2007. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials & Design, 28(4), 1379-1385, DOI: 10.1016/j.matdes.2006.01.008
  • 18. Saketi, S., Östby, J., Olsson, M., 2016. Influence of tool surface topography on the material transfer tendency and tool wear in the turning of 316L stainless steel. Wear, 368-369, 239-252, DOI: 10.1016/j.wear.2016.09.023
  • 19. Smith, G. T., 1989. Advanced Machining - The Handbook of Cutting Technology. IFS Pub/Springer Verlag, German
  • 20. Radek, N., 2023. Properties of WC-Co coatings with Al2O3 addition. Production Engineering Achives, 29(1), 94-100, DOI: 10
  • 21. Sipos, S., 2018. A new method for analysing the efficiency of cutting inserts. IOP Conference Series: Materials Science and Engineering, 448(1), 012043, DOI: 10.1088/1757-899X/448/1/012043
  • 22. Sonawane, S., Wangikar, S., Pukale, K., 2021. Multi-Independent Optimization while Turning of Inconel-600 alloy using Grey Interactive Exploration. Production Engineering Archives, 27(4), 277-282, DOI: 10.30657/pea.2021.27.37
  • 23. Szczotkarz, N., Mrugalski, R., Maruda, R. W., Królczyk, G. M., Legutko, S., Leksycki, K., Dębowski, D., Pruncu, C. I., 2021. Cutting tool wear in turning 316L stainless steel in the conditions of minimized lubrication. Tribology International, 156, 106813, DOI: 10.1016/j.triboint.2020.106813
  • 24. TaeguTec cutting tool catalogue, [online] Available at: https://www.imccompanies.com/TaeguTec/ttkCatalog/item.aspx?cat=6110853&fnum= 623&mapp=TG&app=0&GFSTYP=M&isoD=1, [Accessed at: 01. 07. 2023.] a.
  • 25. TaeguTec cutting tool catalogue, b[online] Available at: https://www.imccompanies.com/taegutec/ttkCatalog/item.aspx?cat=2801655&fnum= 649&mapp=TG&app=51&GFSTYP=M&isoD=1, [Accessed at: 01. 07. 2023.] b.
  • 26. Tschätsch, H., Reichelt, A., 2009. Tool life T., Applied Machining Technology, Springer, Berlin, G
  • 27. Venkatesan, K., (2017). The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source. Journal of Advanced Research, 8(4), 407-423, DOI: 10.1016/j.jare.2017.05.004
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-17068880-6607-4342-994a-671c99dde38b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.