Czasopismo
2022
|
Vol. 28, Iss. 4
|
200--206
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: Cone-beam computed tomography (CBCT) provides an excellent solution to quantitative assessment and correction of patient set-up errors during radiotherapy. However, most linear accelerators are equipped with conventional therapy tables that can be moved in three translational directions and perform only yaw rotation. Uncorrected roll and pitch result in rotational set-up errors, particularly when the distance from the isocenter to the target border is large. The aim of this study was to investigate the impact of rotational errors on the dose delivered to the clinical target volume (CTV), the planning target volume (PTV) and organs at risk (OAR). Material and methods: 30 patients with prostate cancer treated with VMAT technique had daily CBCT scans (840 CBCTs in total) prior to treatment delivery. The rotational errors remaining after on-line correction were retrospectively analysed. The sum plans simulating the dose distribution during the treatment course were calculated for selected patients with significant rotational errors. Results: The dose delivered to the prostate bed CTV reported in the sum plan was not lower than in the original plan for all selected patients. For four patients from the selected group, the D98% for prostate bed PTV was less than 95%. The V47.88Gy for pelvic lymph nodes PTV was less than 98% for two of the selected patients. Conclusions: The analysis of the dosimetric parameters showed that the impact of uncorrected rotations is not clinically significant in terms of the dose delivered to OAR and the dose coverage of CTV. However, the PTV dose coverage is correlated with distance away from the isocenter and is smaller than planned.
Słowa kluczowe
Rocznik
Tom
Strony
200--206
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Central Clinical Hospital of the Ministry of Interior and Administration in Warsaw, Poland, mjaponc@gmail.com
autor
- Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Poland
Bibliografia
- 1. Spiotto MT, Hancock SL, King CR. Radiotherapy after prostatectomy: improved biochemical relapse-free survival with whole pelvic compared with prostate bed only for high-risk patients. Int J Radiat Oncol Biol Phys. 2007;69:54-61. https://doi.org/10.1016/j.ijrobp.2007.02.035
- 2. Lin CC, Gray PJ, Jemal A, Efstathiou JA. Androgen deprivation with or without radiation therapy for clinically node-positive prostatę cancer. J Natl Cancer Inst. 2015;107(7):729-737. https://doi.org/10.1093/jnci/djv119
- 3. Herrmann H, Seppenwoolde Y, Georg D, Widder J. Image guidance: past and future of radiotherapy. Der Radiologe. 2019;59(1):21-27. https://doi.org/10.1007/s00117-019-0573-y
- 4. Keall PJ, Nguyen ST, O'Brien R, et al. Review of real-time 3-dimensional image guided radiation therapy on standard-equipped cancer radiation therapy systems: are we at the tipping point for the era of real-time radiation therapy? Int J Radiat Oncol Biol Phys. 2018;102(4):922-931. https://doi.org/10.1016/j.ijrobp.2018.04.016
- 5. Nabavizadeh N, Elliott DA, Chen Y, et al. Image guided radiation therapy (IGRT) practice patterns and IGRT's impact on workflow and treatment planning: Results from a national survey of American Society for Radiation Oncology members. Int J Radiat Oncol Biol Phys. 2016;94(4):850-857. https://doi.org/10.1016/j.ijrobp.2015.09.035
- 6. Ghadjar P, Fiorino C, et al. ESTRO ACROP consensus guideline on the use of image guided radiation therapy for localized prostate cancer. Radiother Oncol. 2019;141:5-13. https://doi.org/10.1016/j.radonc.2019.08.027
- 7. Zhang X, Shan G, Liu J, Wang B. Margin evaluation of translational and rotational set-up errors in intensity modulated radiotherapy for cervical cancer. Springer Plus. 2016;5(1):1-9. https://doi.org/10.1186/s40064-016-1796-2
- 8. Katayama H, Takahashi S, Kobata T, et al. Impact of rotational errors of whole pelvis on the dose of prostate-based image-guided radiotherapy to pelvic lymph nodes and small bowel in high-risk prostate cancer. Rep Pract Oncol Radiother. 2021;26(6):906-914, https://doi.org/10.5603/RPOR.a2021.0107
- 9. Lawton CAF, Michalski J, El-Naqa I, et al. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2009;74(2):383-387, https://doi.org/10.1016/j.ijrobp.2008.08.002
- 10. Gay H, Barthold HJ, O'Meara E, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys. 2012;83(3):353-362. https://doi.org/10.1016/j.ijrobp.2012.01.023
- 11. Webster A, Appelt AL, Eminowicz G. Image-Guided Radiotherapy for Pelvic Cancers: A Review of Current Evidence and Clinical Utilisation. Clinical Oncology. 2020;32:805-816. https://doi.org/10.1016/j.clon.2020.09.010
- 12. Kershaw L, van Zadelhoff L, Heemsbergen W, et al. Image Guided Radiation Therapy Strategies for Pelvic Lymph Node Irradiation in High-Risk Prostate Cancer: Motion and Margins. Int J Radiat Oncol Biol Phys. 2018;100(1):68-77. https://doi.org/10.1016/j.ijrobp.2017.08.044
- 13. Laursen LV, Elstrøm UV, Vestergaard A, et al. Residual rotational set-up errors after daily cone-beam CT image guided radiotherapy of locally advanced cervical cancer. Radiother Oncol. 2012;105(2):220-225. https://doi.org/10.1016/j.radonc.2012.08.012
- 14. Kaiser A, Schultheiss TE, Wong,JYC, et al. Pitch, roll, and yaw variations in patient positioning. Int J Radiat Oncol Biol Phys. 2006;66(3):949-955, https://doi.org/10.1016/j.ijrobp.2006.05.055
- 15. Quint S, de Boer HCJ, van Sörnsen de Koste JR, et al. Set-up verification of cervix cancer patients treated with long treatment fields; implications of a non-rigid bony anatomy. Radiother Oncol. 2001;60(1):25-29. https://doi.org/10.1016/s0167-8140(01)00346-2
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-16f88785-ce51-4a1b-a9b9-ccf55e5f0d23