Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2020 | Vol. 68, no. 3 | 861--875
Tytuł artykułu

A review on hydrodynamics of horseshoe vortex at a vertical cylinder mounted on a fat bed and its implication to scour at a cylinder

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A comprehensive review of the local scour due to vortical fow around a cylindrical bridge pier under steady current is presented in this paper. The mechanism of the formation of vortices, the size, velocity and strength of horseshoe vortex (HSV), formation of the HSV by the separation of laminar and turbulent boundary layer and the scour around a cylindrical pier due to vortices have been presented. The complexity involved in the scour-related calculations, and the scope for future research are discussed in the last section.
Słowa kluczowe
PL
EN
Wydawca

Czasopismo
Rocznik
Strony
861--875
Opis fizyczny
Bibliogr. 140 poz.
Twórcy
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India, saud@civil.iitkgp.ac.in
Bibliografia
  • 1. AASHTO (2010) LRFD bridge design specifications, 5th edn, Washington, DC
  • 2. Afzal MS, Bihs H, Kamath A, Arntsen ØA (2015) Three-dimensional numerical modeling of pier scour under current and waves using level-set method. J Offshore Mech Arct Eng 137(3):032001
  • 3. Afzal MS, Bihs H, Kumar L (2020) Computational fluid dynamics modeling of abutment scour under steady current using the level set method. Int J Sediment Res. https://doi.org/10.1016/j.ijsrc.2020.03.003
  • 4. Aghaee Y, Hakimzadeh H (2010) Three dimensional numerical modeling of flow around bridge piers using LES and RANS. River Flow 2010:211–218
  • 5. Ahmed F, Rajaratnam N (1998) Flow around bridge piers. J Hydraul Eng 124(3):288–300
  • 6. Alfonsi G, Ferraro D, Lauria A, Gaudio R (2019) Large-eddy simulation of turbulent natural-bed flow. Phys Fluids 31(8):085105
  • 7. Ali KH, Karim OA, O’Connor BA (1997) Flow patterns around bridge piers and offshore structures. In: Stream stability and scour at highway bridges: compendium of stream stability and scour papers presented at conferences sponsored by the water resources engineering (hydraulics) Division of the American Society of Civil Engineers. ASCE, New York, pp 179–179
  • 8. Apsilidis N, Diplas P, Dancey CL, Bouratsis P (2015) Time-resolved flow dynamics and reynolds number effects at a wall-cylinder junction. J Fluid Mech 776:475–511
  • 9. Arneson L, Zevenbergen L, Lagasse P, Clopper P (2012) Evaluating scour at bridges. Hydraulic engineering circular no. 18
  • 10. Baker CJ (1979a) The laminar horseshoe vortex. J Fluid Mech 95(2):347–367
  • 11. Baker CJ (1979b) Vortex flow around the bases of obstacles. PhD thesis. University of Cambridge, Cambridge
  • 12. Baker CJ (1980) The turbulent horseshoe vortex. J Wind Eng Ind Aerodyn 6(1–2):9–23
  • 13. Baker CJ (1991) The oscillation of horseshoe vortex systems. J Fluids Eng 113(3):489–495
  • 14. Ballio F, Bettoni C, Franzetti S (1998) A survey of time-averaged characteristics of laminar and turbulent horseshoe vortices. ASME J Fluids Eng 113:233–242
  • 15. Baykal C, Sumer BM, Fuhrman DR, Jacobsen NG, Fredsøe J (2015) Numerical investigation of flow and scour around a vertical circular cylinder. Philos Trans R Soc A Math Phys Eng Sci 373(2033):20140104
  • 16. Bhattacharya P, Manoharan M, Govindarajan R, Narasimha R (2006) The critical reynolds number of a laminar incompressible mixing layer from minimal composite theory. J Fluid Mech 565:105–114
  • 17. Bihs H, Olsen NRB (2008) Three-dimensional numerical modeling of pier scour. In: Proceedings of the 4th international conference on scour and erosion, vol 4. ICSE, New York, pp 147–151
  • 18. Bosch G, Rodi W (1998) Simulation of vortex shedding past a square cylinder with different turbulence models. Int J Num Methods Fluid 28(4):601–616
  • 19. Bossel U, Honnold F (1976) On the formation of horseshoe vortices in plate fin heat exchangers. Arch Mech 28(5–6):773–780
  • 20. Breusers H, Raudkivi A (1991) Scouring, hydraulic structures design manual 2. IAHR, AA Balkema, Rotterdam, p 143
  • 21. Breusers H, Nicollet G, Shen H (1977) Local scour around cylindrical piers. J Hydraul Res 15(3):211–252
  • 22. Chen Q, Qi M, Zhong Q, Li D (2017) Experimental study on the multimodal dynamics of the turbulent horseshoe vortex system around a circular cylinder. Phys Fluids 29(1):015106
  • 23. Cheng N-S, Wei M (2019) Scaling of scour depth at bridge pier based on characteristic dimension of large-scale vortex. Water 11(12):2458
  • 24. Coon MD, Tobak M (1995) Experimental study of saddle point of attachment in laminar juncture flow. AIAA J 33(12):2288–2292
  • 25. Dargahi B (1987) Flow field and local scouring around a pier. TRITA-VBI, bulletin no, p 137
  • 26. Dargahi B (1989) The turbulent flow field around a circular cylinder. Exp Fluids 8(1–2):1–12
  • 27. Dargahi B (1990) Controlling mechanism of local scouring. J Hydraul Eng 116(10):1197–1214
  • 28. Devenport WJ, Simpson RL (1990) Time-depeiident and time-averaged turbulence structure near the nose of a wing-body junction. J Fluid Mech 210:23–55
  • 29. Dey S (1991) Clear water scour around circular bridge piers: a model. PhD thesis. Indian Institute of Technology, Kharagpur
  • 30. Dey S (1997) Local scour at piers, part I: a review of developments of research. Int J Sediment Res 12(2):23–46
  • 31. Dey S (2001) Experimental study on incipient motion of sediment particles on generalized sloping fluvial beds. Int J Sediment Res 16(3):391–398
  • 32. Dey S (2014) Scour. Springer, Berlin, pp 563–639
  • 33. Dey S, Bose SK (1994) Bed shear in equilibrium scour around a circular cylinder embedded in a loose bed. Appl Math Model 18(5):265–273
  • 34. Dey S, Raikar RV (2007) Characteristics of horseshoe vortex in developing scour holes at piers. J Hydraul Eng 133(4):399–413
  • 35. Dey S, Bose S, Sastry G (1992a) Clear water scour at circular piers, part I: flow model. In: Proceedings of the 8th Conference IAHR Asian and Pacific Division, pp 69–80
  • 36. Dey S, Bose S, Sastry G (1992b) Clear water scour at circular piers, part II: design formula. In: Proceedings of the 8th Conference IAHR Asian and Pacific Division, pp 81–92
  • 37. Dey S, Bose SK, Sastry GL (1995) Clear water scour at circular piers: a model. J Hydraul Eng 121(12):869–876
  • 38. Dey S, Sarkar S, Solari L (2011) Near-bed turbulence characteristics at the entrainment threshold of sediment beds. J Hydraul Eng 137(9):945–958
  • 39. Dimotakis PE (2000) The mixing transition in turbulent flows. J Fluid Mech 409:69–98
  • 40. Dodaro G, Tafarojnoruz A, Stefanucci F, Adduce C, Calomino F, Gaudio R, Sciortino G (2014) An experimental and numerical study on the spatial and temporal evolution of a scour hole downstream of a rigid bed. In: Proceedings of the international conference on fluvial hydraulics, river flow, Lausanne, pp 3–5
  • 41. Duan JG (2005) Two-dimensional model simulation of flow field around bridge piers. In: Walton R (ed) Impacts of global climate change. ASCE, New York, pp 1–12
  • 42. Dwyer HA (1968) Solution of a three-dimensional boundary-layer flow with separation. AIAA J 6(7):1336–1342
  • 43. Eckerle W, Awad J (1991) Effect of freestream velocity on the three-dimensional separated flow region in front of a cylinder. J Fluids Eng Mar 113:37–44
  • 44. Engelund F, Fredsøe J (1976) A sediment transport model for straight alluvial channels. Hydrol Res 7(5):293–306
  • 45. Engelund F, Fredsøe J (1982) Hydraulic theory of alluvial rivers. In: Ven Te Chow (ed) Advances in hydroscience, vol 13. Elsevier, London, pp 187–215
  • 46. Escauriaza C, Sotiropoulos F (2011) Reynolds number effects on the coherent dynamics of the turbulent horseshoe vortex system. Flow Turbul Combust 86(2):231–262
  • 47. Ettema R, Kirkil G, Muste M (2006) Similitude of large-scale turbulence in experiments on local scour at cylinders. J Hydraul Eng 132(1):33–40
  • 48. Ettema R, Melville BW, Constantinescu G (2011) Evaluation of bridge scour research: pier scour processes and predictions. Citeseer, London
  • 49. Euler T, Herget J (2012) Controls on local scour and deposition induced by obstacles in fluvial environments. Catena 91:35–46
  • 50. Flow Science I (2019) FLOW-3D, version 12.0, Santa Fe, NM
  • 51. Franke R, Rodi W (1993) Calculation of vortex shedding past a square cylinder with various turbulence models. In: Durst F, Friedrich R, Launder BE, Schmidt FW, Schumann U, Whitelaw JH (eds) Turbulent shear flows, vol 8. Springer, Berlin, pp 189–204
  • 52. Gazi AH, Afzal MS (2019) A new mathematical model to calculate the equilibrium scour depth around a pier. Acta Geophys 68:1–7
  • 53. Gazi AH, Afzal MS, Dey S (2019) Scour around piers under waves: current status of research and its future prospect. Water 11(11):2212
  • 54. Gazi AH, Purkayastha S, Afzal MS (2020) The equilibrium scour depth around a pier under the action of collinear waves and current. J Mar Sci Eng 8(1):36
  • 55. Geng Y-F, Wanag Z-L (2008) Two-dimensional unstructured finite volume model for bridge pier flow. Hydro-Sci Eng 4:78–84
  • 56. Gioia G, Bombardelli FA (2005) Localized turbulent flows on scouring granular beds. Phys Rev Let 95(1):014501
  • 57. Gioia G, Chakraborty P (2006) Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys Rev Let 96(4):044502
  • 58. Goldstein RJ, Karni J (1984) The effect of a wall boundary layer on local mass transfer from a cylinder in crossflow. J Heat Transfer 106(2):260–267
  • 59. Graf W, Istiarto I (2002) Flow pattern in the scour hole around a cylinder. J Hydraul Res 40(1):13–20
  • 60. Guan D, Chiew Y-M, Wei M, Hsieh S-C (2019) Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier. Int J Sediment Res 34(2):118–124
  • 61. Hall M (1966) The structure of concentrated vortex cores. Prog Aerosp Sci 7:53–110
  • 62. Hjorth P (1975) Studies on the nature of local scour. Inst. för Teknisk Vattenresurslära, Lunds Tekniska Högskola, Lunds University
  • 63. Kamojjala S, Gattu N, Parola A, Hagerty D (1994) Analysis of 1993 Upper Mississippi flood highway infrastructure damage. In: Espey WH, Combs PG (eds) Water resources engineering. ASCE, New York, pp 1061–1065
  • 64. Keshavarzi A, Melville B, Ball J (2014) Three-dimensional analysis of coherent turbulent flow structure around a single circular bridge pier. Env Fluid Mech 14(4):821–847
  • 65. Khan MJ, Ahmed A, Trosper JR (1995) Dynamics of the juncture vortex. AIAA J 33(7):1273–1278
  • 66. Khaple S, Hanmaiahgari PR, Gaudio R, Dey S (2017) Interference of an upstream pier on local scour at downstream piers. Acta Geophys 65(1):29–46
  • 67. Khosronejad A, Kang S, Sotiropoulos F (2012) Experimental and computational investigation of local scour around bridge piers. Adv Water Resour 37:73–85
  • 68. Kirkil G, Constantinescu G (2010) Flow and turbulence structure around an in-stream rectangular cylinder with scour hole. Water Resour Res 46(11):W05507
  • 69. Kirkil G, Constantinescu S, Ettema R (2008) Coherent structures in the flow field around a circular cylinder with scour hole. J Hydraul Eng 134(5):572–587
  • 70. Kolmogorov AN (1991) The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Proc R Soc Lond Ser A Math Phys Sci 434(1890):9–13
  • 71. Kubo K, Takezawa M (1988) Experimental study on horseshoe vortex in the upstream front of cylindrical structure. In: Kolkman PA et al (eds) Modelling soil–water–structure interactions. Balkema, Rotterdam, pp 117–126
  • 72. Lança RM, Fael CS, Cardoso AH (2010) Assessing equilibrium clear water scour around single cylindrical piers. River Flow 2010:1207–1213
  • 73. Lança RM, Fael CS, Maia RJ, Pêgo JP, Cardoso AH (2013) Clear-water scour at comparatively large cylindrical piers. J Hydraul Eng 139(11):1117–1125
  • 74. Launay G, Mignot E, Rivière N, Perkins R (2017) An experimental investigation of the laminar horseshoe vortex around an emerging obstacle. J Fluid Mech 830:257–299
  • 75. Laursen E, Toch A (1956) Scour around bridge piers and abutments, vol 4. Iowa Highway Research Board, Ames
  • 76. Lee SO, Sturm TW (2009) Effect of sediment size scaling on physical modeling of bridge pier scour. J Hydraul Eng 135(10):793–802
  • 77. Lighthill M (1963) Boundary layer theory. In: Laminar boundary layers. pp 46–113
  • 78. Lillycrop WJ, Hughes SA (1993) Scour hole problems experienced by the corps of engineers: data presentation and summary. Technical report, Coastal Engineering Research Center Vicksburg MS
  • 79. Lin C, Ho TC, Dey S (2008) Characteristics of steady horseshoe vortex system near junction of square cylinder and base plate. J Eng Mech 134(2):184–197
  • 80. Ling S, Hubbard P (1956) The hot-film anemometer—a new device for fluid mechanics research. J Aero Sci 23(9):890–891
  • 81. Loucks RB, Wallace JM (2012) Velocity and velocity gradient based properties of a turbulent plane mixing layer. J Fluid Mech 699:280–319
  • 82. Luettich R, Westerink J, Scheffner N (1992) Modeling 3-D circulation using computations for the Western North Atlantic and Gulf of Mexico. In: Estuarine and coastal modeling II. pp. 632–643
  • 83. Manes C, Brocchini M (2015) Local scour around structures and the phenomenology of turbulence. J Fluid Mech 779:309–324
  • 84. Manfreda S, Link O, Pizarro A (2018) A theoretically derived probability distribution of scour. Water 10(11):1520
  • 85. Maskell E (1955) Flow separation in three dimensions. RAE report no, Aero 2565
  • 86. Mayerle R, Wang S, Toro F (1995) Verification of a three-dimensional numerical model simulation of the flow in the vicinity of spur dikes. J Hydraul Res 33(2):243–256
  • 87. Melville BW (1997) Pier and abutment scour: integrated approach. J Hydraul Eng 123(2):125–136
  • 88. Melville BW, Chiew Y-M (1999) Time scale for local scour at bridge piers. J Hydraul Eng 125(1):59–65
  • 89. Melville BW, Coleman SE (2000) Bridge scour. Water Resources Publication, New York
  • 90. Melville BW, Raudkivi AJ (1977) Flow characteristics in local scour at bridge piers. J Hydraul Res 15(4):373–380
  • 91. Melville BW, Sutherland A (1988) Design method for local scour at bridge piers. J Hydraul Eng 114(10):1210–1226
  • 92. Mignot E, Cai W, Launay G, Riviere N, Escauriaza C (2016) Coherent turbulent structures at the mixing-interface of a square open-channel lateral cavity. Phys Fluids 28(4):045104
  • 93. Moreno M, Birjukova O, Grimaldi C, Gaudio R, Cardoso AH (2017) Experimental study on local scouring at pile-supported piers. Acta Geophys 65(3):411–421
  • 94. Nagata N, Hosoda T, Nakato T, Muramoto Y (2005) Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. J Hydraul Eng 131(12):1074–1087
  • 95. Norman RS (1972) On obstacle generated secondary flows in laminar boundary layers and transition to turbulence. PhD dissertation, Illinois Institute of Technology
  • 96. Olsen NR, Kjellesvig HM (1998) Three-dimensional numerical flow modeling for estimation of maximum local scour depth. J Hydraul Res 36(4):579–590
  • 97. Olsen NR, Melaaen MC (1993) Three-dimensional calculation of scour around cylinders. J Hydraul Eng 119(9):1048–1054
  • 98. Omara H, Tawfik A (2018) Numerical study of local scour around bridge piers. In: IOP conference series: earth and environmental science, vol 151, p 012013. IOP Publishing, New York
  • 99. OpenCFD (2007) OpenFOAM—the open source CFD toolbox-user’s guide, 1.4 edn. OpenCFD Ltd., London
  • 100. Padhi E, Ali SZ, Dey S (2019) Mechanics of bed particle saltation in turbulent wall-shear flow. Proc R Soc A 475(2230):20190318
  • 101. Paik J, Escauriaza C, Sotiropoulos F (2007) On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Phys Fluids 19(4):045107
  • 102. Pandey M, Chen S-C, Sharma P, Ojha C, Kumar V (2019) Local scour of armor layer processes around the circular pier in non-uniform gravel bed. Water 11(7):1421
  • 103. Patankar S (1980) Numerical heat transfer and fluid flow. Electro skills series. Hemisphere Publishing Corporation.
  • 104. Peake DJ, Galway R (1965) The three-dimensional separation of a plane incompressible laminar boundary layer produced by a circular cylinder mounted normal to a flat plate. Technical report, National Research Council Canada
  • 105. Pizarro A, Samela C, Fiorentino M, Link O, Manfreda S (2017) Brisent: an entropy-based model for bridge-pier scour estimation under complex hydraulic scenarios. Water 9(11):889
  • 106. Praisner TJ, Smith CR (2005) The dynamics of the horseshoe vortex and associated endwall heat transfer—part I: temporal behavior. J Turbomach 128(4):747–754
  • 107. Raikar R, Dey S (2005a) Scour of gravel beds at bridge piers and abutments. In: Proceedings of the institution of civil engineers-water management, vol 158. Thomas Telford Ltd, London, pp 157–162
  • 108. Raikar RV, Dey S (2005b) Clear-water scour at bridge piers in fine and medium gravel beds. Can J Civ Eng 32(4):775–781
  • 109. Raikar RV, Dey S (2008) Kinematics of horseshoe vortex development in an evolving scour hole at a square cylinder. J Hydraul Res 46(2):247–264
  • 110. Rajab PM, Thiruvenkatasamy K (2018) Comparison of 2D-numerical modelling of local scour around a circular bridge pier in steady current. J Eng and Appl Sci 13:5243–5251
  • 111. Ram VV (1963) investigations ü over the corner boundary layer on a circular cylinder with side wall. Report 63:64
  • 112. Raudkivi AJ (1986) Functional trends of scour at bridge piers. J Hydraul Res 112(1):1–13
  • 113. Richardson EV, Davis SR (2001) Evaluating scour at bridges, hydraulic engineering circular no. 18 (HEC-18). Rep. No. FHWA NHI, pp 01–001
  • 114. Richardson EV, Lagasse PF (1999) Stream stability and scour at highway bridges. ASCE, New York
  • 115. Richardson JE, Panchang VG (1998) Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng 124(5):530–540
  • 116. Richardson EV, Davis SR et al (1995) Evaluating scour at bridges. Technical report. United States. Federal Highway Administration, Office of Technology Applications
  • 117. Roulund A, Sumer BM, Fredsøe J, Michelsen J (2005) Numerical and experimental investigation of flow and scour around a circular pile. J Fluid Mech 534:351–401
  • 118. Saha R, Lee S, Hong S (2018) A comprehensive method of calculating maximum bridge scour depth. Water 10(11):1572
  • 119. Salaheldin TM, Imran J, Chaudhry MH (2004) Numerical modeling of three-dimensional flow field around circular piers. J Hydraul Eng 130(2):91–100
  • 120. Sarker MA (1998) Flow measurement around scoured bridge piers using acoustic-doppler velocimeter (ADV). Flow Meas Ins 9(4):217–227
  • 121. Schwind R (1962) The three-dimensional boundary layer near a strut. Gas Turbine Lab Report
  • 122. Sedney R, Kitchens CW Jr (1975) The structure of three-dimensional separated flows in obstacle-boundary layer interactions. Technical report, Army Ballistic Research Lab Aberdeen Proving Ground
  • 123. Shatanawi KM, Aziz NM, Khan AA (2008) Frequency of discharge causing abutment scour in South Carolina. J Hydraul Eng 134(10):1507–1512
  • 124. Sheppard DM, Miller W Jr (2006) Live-bed local pier scour experiments. J Hydraul Eng 132(7):635–642
  • 125. Sheppard DM, Ontowirjo B, Zhao G (1999) Local scour near single piles in steady currents. In: Richardson EV, Lagasse PF (eds) Stream stability and scour at highway bridges, compendium of papers, ASCE water resources conferences 1991–1998
  • 126. Sheppard DM, Zhao G, Ontowirjo B (1995) Local scour near single piles in steady currents. In: Espey WH (ed) Water resources engineering. ASCE, New York, pp 1809–1813
  • 127. Sheppard DM, Odeh M, Glasser T (2004) Large scale clear-water local pier scour experiments. J Hydraul Eng 130(10):957–963
  • 128. Sheppard DM, Demir H, Melville BW (2011) Scour at wide piers and long skewed piers, vol 682. Transportation Research Board, London
  • 129. Sheppard DM, Melville BW, Demir H (2013) Evaluation of existing equations for local scour at bridge piers. J Hydraul Eng 140(1):14–23
  • 130. Shields A (1936) Application of similarity principles and turbulence research to bed-load movement. Hydraulic engineering reports
  • 131. Simpson RL (2001) Junction flows. Ann Rev Fluid Mech 33(1):415–443
  • 132. Smith D (1976) Bridge failures. Proc Inst Civ Eng 60(3):367–382
  • 133. Tafarojnoruz A, Gaudio R (2012) Vortex scouring process around bridge pier with a caisson. J Hydraul Res 50(4):443–444
  • 134. Thomas AS (1987) The unsteady characteristics of laminar juncture flow. Phys Fluids 30(2):283–285
  • 135. Tingsanchali T, Maheswaran S (1990) 2-D depth-averaged flow computation near groyne. J Hydraul Eng 116(1):71–86
  • 136. Tonkin S, Yeh H, Kato F, Sato S (2003) Tsunami scour around a cylinder. J Fluid Mech 496:165–192
  • 137. Tseng M-H, Yen C-L, Song CC (2000) Computation of three-dimensional flow around square and circular piers. Int J Num Methods Fluids 34(3):207–227
  • 138. Unger J, Hager WH (2007) Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp Fluids 42(1):1–19
  • 139. Yang Y, Melville BW, Sheppard D, Shamseldin AY (2019) Live-bed scour at wide and long-skewed bridge piers in comparatively shallow water. J Hydraul Eng 145(5):06019005
  • 140. Zeeshan Ali S, Dey S (2019) Bed particle saltation in turbulent wall-shear flow: a review. Proc R Soc A 475(2223):20180824
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-16e0a5b9-0ca8-4568-a8cb-9979d765623d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.