Warianty tytułu
Języki publikacji
Abstrakty
The paper discusses the problem of forecasting lumpy demand which is typical for spare parts. Several prediction methods are presented in the article – traditional techniques based on time series and advanced methods that use Artificial Intelligence tools. The research conducted in the paper focuses on comparison of eight forecasting methods, including classical, hybrid and based on artificial neural networks. The aim of the paper is to assess the efficiency of lumpy demand forecasting methods that apply AI tools. The assessment is conducted by a comparison with traditional methods and it is based on Root Mean Square Errors (RMSE) and relative forecast errors (ex post) values. The article presents also a new approach to the lumpy demand forecasting issue – a method which combines regression modelling, information criteria and artificial neural networks.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
41--50
Opis fizyczny
Bibliogr. 15 poz., tab., rys.
Twórcy
autor
- Wrocław University of Technology, Poland, maria.rosienkiewicz@pwr.wroc.pl
Bibliografia
- [1] Carmo J.L., Rodrigues A.J., Adaptive forecasting of irregular demand processes, Engineering Applications of Artificial Intelligence, 17 (2004), 2004,
- [2] Ghiassi M., Urban Water Demand Forecasting with a Dynamic Artificial Neural Network Model, Journal of Water Resources Planning and Management, Vol. 134, No. 2, March/April 2008,
- [3] Gopalakrishnan P., Banerji A. K., Maintenance And Spare Parts Management, PHI Learning Pvt. Ltd., New Delhi, 2006,
- [4] Gutierrez R.S., Solis A.O., Mukhopadhyay S., Lumpy demand forecasting using neural networks, International Journal of Production Economic, vol.111, 2008,
- [5] Kazemi A., A Multi-level Artificial Neural Network for Gasoline Demand Forecasting of Iran, Second International Conference on Computer and Electrical Engineering, ICCEE '09, 2009,
- [6] Knosala R., Zastosowania metod sztucznej inteligencji w inżynierii produkcji, Wydawnictwa Naukowo-techniczne, Warszawa, 2002,
- [7] Kozik P., Sęp J., Aircraft engine overhaul demand forecasting using ANN, Management and Production Engineering Review, Vol.3, Nr 2, Czerwiec 2012,
- [8] Król R., Zimroz R., Stolarczyk Ł., Analiza awaryjności układów hydraulicznych samojezdnych maszyn roboczych stosowanych w KGHM POLSKA MIEDŹ S.A., Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, Nr 128, Nr 36.
- [9] Lawrence K. D., Klimberg R. K., Lawrence S. M., Fundamentals of Forecasting Using Excel, Industrial Press 2009,
- [10] Lewis C.D., Demand Forecasting and Inventory Control: A Computer Aided Learning Approach, Woodhead Publishing Ltd, England, 1998,
- [11] Młyńczak M., Problematyka prognozowania zużycia części wymiennych, Logistyka i Transport, Logistyka produkcji samochodów i części zamiennych, Konferencja naukowo-techniczna, Wrocław, 18 – 19.12.2008,
- [12] Moon M. A., Demand and Supply Integration: The Key to World-Class Demand Forecasting, FT Press, USA, 2013,
- [13] Nasiri Pour A., Rostami Tabar B., Rahimzadeh A., A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand, World Academy of Science, Engineering and Technology 40 2008,
- [14] Nowakowski T., Metodyka prognozowania niezawodności obiektów mechanicznych, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 1999,
- [15] Yegnanarayana B., Artificial neural networks, PHI Learning Pvt. Ltd., India, 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-16a5b454-d1c1-4870-b245-02884ffaf333