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1. Introduction
Energy efficiency has become a critical concern worldwide, and strategies to improve energy efficiency are being 
implemented across various aspects of society and industry. Electric motors are significant consumers of electrical 
energy, making them a prime target for efficiency-improvement efforts. Researchers have dedicated substantial 
efforts to enhancing the efficiency of electrical machines, and this has been a focus of study for the past few 
decades. The optimal design of electrical machines can be achieved by optimising various objective functions. 
These functions may include efficiency, torque, power factor, output torque, cogging torque, volume, mass, and 
total cost. In some cases, a combination of multiple objective functions is used, resulting in multi-objective or  many-
objective optimisation approaches. This allows for a more comprehensive assessment of machine performance. 
The optimisation process for electrical machines involves defining a vector of variables related to dimensions, 
current densities, flux densities, etc. These optimisations must also adhere to a set of constraints related to 
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Abstract:  Optimisation, or optimal design, has become a fundamental aspect of engineering across various domains, including power devices, 
power systems, and industrial systems. Engineers and academics have been actively involved in optimising these systems to achieve 
better performance, efficiency, and cost-effectiveness. Optimising electrical machines, including permanent magnet motors, is a complex 
task. It often involves solving intricate problems with various parameters and constraints. Engineers use different optimisation methods 
to tackle these challenges. Depending on the specific requirements and goals of a design project, engineers may employ either single-
objective or multi-objective optimisation approaches. Single-objective optimisation focuses on optimising a single objective, while multi-
objective optimisation considers multiple conflicting objectives. In optimisation, objective functions are mathematical representations 
of what needs to be optimised. In this case, optimising the efficiency of the motor, reducing cogging torque, and minimising the 
total weight of active materials are defined as possible objective functions. Genetic algorithms are nature based algorithms that are 
commonly used in engineering to find optimal solutions to complex problems, including those with multiple objectives. In this paper, 
after conducting optimisations using different objective functions and methods, a comparative analysis of the results is performed. This 
helps in understanding the trade-offs and benefits of different design choices. Finite element analysis (FEA) is a computational method 
used to analyse the physical properties and behaviours of complex structures and systems. In this case, FEA is used to validate and 
analyse selected optimisation solutions to ensure they meet the desired characteristics and parameters. Overall, this work demonstrates 
the interdisciplinary nature of engineering, where mathematics, computer science (for optimisation algorithms), and physics (for FEA) 
converge to improve the performance and efficiency of electrical machines. It also underscores the importance of considering multiple 
objectives in design processes to find optimal solutions that strike a balance between competing goals.
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thermal, mechanical, manufacturing, or standards limits. Over time, optimisation methods have evolved. Initially, 
deterministic methods were used, but they heavily depended on the starting point and the determination of first-
order derivatives. This makes it a difficult problem to solve by hand; therefore, at the early stages, scientists and 
researchers were trying to implement different types of optimisation methods (Liu and Slemon, 1991). The first 
methods that were implemented belong to the group of methods named as deterministic methods (Brisset and 
Brochet, 1998; Gottvald et al., 1992; Im et al., 1993). The quality of the search and the solution in those methods 
is highly dependent on the selection of the starting point, as well as the determination of the first-order derivation in 
some cases that is usually hard to determine. The introduction of concepts like Adaptation in Artificial Systems by 
John Holland led to the development and adoption of stochastic optimisation methods (Holland, 1973, 1995). These 
methods, including genetic algorithm (GA), are based on principles of natural evolution and operate by evaluating 
fitness rather than directly considering variable values. Stochastic methods, such as GAs, gained popularity due 
to their ability to start with randomly generated populations and iteratively improve solutions based on fitness 
evaluations. They have been successfully applied to optimise electromagnetic devices. There is a substantial body 
of scientific work dedicated to implementing GAs and other stochastic optimisation techniques in the optimal design 
of electromagnetic devices (Sim et al., 1997; Üler et al., 1995; Üler and Mohammed, 1996; Wurtz et al., 1997). This 
reflects ongoing efforts to improve energy efficiency in electrical machines.

This paper is divided into five sections. After the Introduction, Section 2 presents the structure and the behaviour 
of the GA during the optimisation. In Section 3, the definition and the mathematical model for all the investigated 
objective functions that are used in the GA optimisation of the investigated motor are presented in detail. The 
comparative optimisation results and their analysis, as well as the finite element method (FEM) analysis of the 
analysed solutions are presented in Section 4. Finally, Section 5 presents the main conclusions derived from the 
optimisation results and the FEM analysis.

2. GA as an Optimisation Tool
GAs were proposed by John Holland in 1975. They are a class of evolutionary-based stochastic optimisation 
algorithms inspired by the principles of natural selection, specifically the concept of ‘survival of the fittest’. GAs 
are known for their global search capabilities and have been highly successful in optimisation tasks. They focus 
on optimising the objective function value rather than the values of individual optimisation parameters. GAs 
start optimisation with a population of potential solutions represented as chromosomes. They also perform their 
search using a large number of individuals (chromosomes) during one generation that ensures a wide area of 
search that can avoid a local optimum and reach the global optimum. These chromosomes are typically vectors 
of real or binary numbers representing the values of optimisation variables. In this work, vectors of floating-point 
numbers as the representation scheme are used, as it simplifies the determination of variable values compared 
to binary representations (Janikow and Michalewicz, 1991). GAs use a fitness function tailored to the specific 
problem to evaluate the quality of each chromosome in the population. This function guides the selection of 
the best chromosomes. The GA employs three key genetic operators: selection, crossover (recombination), and 
mutation. These operators are responsible for generating a new set of solutions (offspring) in each generation. 
The values of specific GA parameters used in this optimisation problem include population size (N = 20), crossover 
probability (pc = 0.85), and mutation probability (pm = 0.07). To enhance the quality of the search, in the presented 
algorithm, a fitness scaling and elitism are implemented. Fitness scaling equalises the chances of survival for all 
population members, preventing premature convergence to suboptimal solutions successfully avoiding the local 
optima. Elitism ensures that the best solution is automatically passed to the next generation. GAs have been 
applied extensively in optimising electrical machines, including their optimal design. Various objective functions 
are considered in this context, such as efficiency, electromagnetic torque, cogging torque, total motor mass, 
and power density (Cvetkovski and Petkovska, 2008, 2010, 2013). In this investigation, the stopping rule for 
the GA search is defined to be the number of generations. Therefore, the optimal number of generations can be 
determined by performing a number of preparatory runs for various number of generations and comparing the 
objective functions values for the different runs. Initially, the GA program, used in this work, was created for the 
following work (Cvetkovski, 2001) and successfully used for many other works involving different motors and 
different objective functions.
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3.	 Objective	Functions	Definition
The motor that is under consideration in this work is a brushless three-phase permanent magnet synchronous 
motor (PMSM). The motor has a laminated stator with 36 slots and a rotor with 6-skewed SmCo5 surface-mounted 
permanent magnets with Br = 0.95 T. The rated data of the motor are: I = 18 A, T = 10 Nm, and n = 1,000 rpm at a 
frequency of 50 Hz.

In this research work, three different single-objective functions, as well as three multi-objective functions are 
applied in order to improve the overall performance of the investigated permanent magnet motor. In the single-
objective function optimisation, the efficiency of the motor, the cogging torque, and the overall weight of the active 
materials are implemented in the optimisation process as objective functions. In the multi-objective optimisation 
approach, a combination of those functions is investigated as an objective function and their results compared with 
the single-objective approach. In the following text, a brief presentation of the mathematical model that defines the 
mentioned single-objective functions is given, as well as the presentation of the multi-objective functions that are a 
combination of the single-objective functions multiplied by a given scaling factor, which is also defined as a separate 
optimisation parameter.

3.1.	 Efficiency	–	single	objective
Efficiency of the motor is one of the functions that have been very frequently used as an objective function in the 
optimal design procedures and it is defined as a ratio between the output and the input power. Hence, a proper 
mathematical model of the motor is developed as one of the contributions of this paper. The mathematical model of 
the motor consists of a number of equations that define all motor design parameters, and the mathematical model 
is constructed towards the definition of the objective function, in this case the efficiency of the PMSM. The defined 
mathematical model is afterwards implemented in the GA and used for the optimisation purposes. The efficiency, as 
an objective function, is expressed by the following equation:
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where: Poutput is the output power of the motor and Pinput is the input power of the motor defined as a sum of the 
input power and all the motor power losses, T – rated torque, wm – rated speed, PCu – ohmic power loss, PFe – 
core loss, and Pwf – windage and friction losses. In this optimisation process, the following motor parameters 
have been selected as optimisation parameters in the efficiency-improvement procedure: outside radius of 
the rotor iron core Rro, permanent magnet fraction fm, permanent magnet radial height hm, air-gap g, and axial 
active length of the motor L. The cross-section of the analysed motor and the defined optimisation parameters 
are presented in Figure 1. The rest of the design motor parameters, especially in the stator, are defined to 
be dependent on the optimisation parameters and therefore exclude any conflict of dimensions during the 
optimisation process.

Fig. 1. PMSM cross-section and optimisation parameters presentation. PMSM, permanent magnet synchronous motor.
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The power losses presented in Eq. (1) are defined with the following equations:
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where: Rph – stator winding phase resistance, Iph – phase current, LCu – total length of a single stator phase winding, 
ACu – slot area occupied with the winding, rCu20 – copper specific resistivity at 20oC, Pem – electromagnetic power, 
E0ph – induced phase back-EMF (Electromotive force) and h*app – apparent efficiency, which is product of motor 
efficiency h and power factor cosφ, Po – no load losses, PFeSY – iron power losses in stator yoke and PFeSt – iron 
power losses in stator teeth, pS1.5/50 – specific iron power losses at flux density of 1.5 T and frequency of 50 Hz, 
BSY – stator yoke (back iron) flux density, BSt – stator teeth flux density, f – frequency, a – Steinmetz constant 
(1 < a < 2, a = 1.5 was used), mFeSY – total stator yoke iron mass, and mFest – total stator teeth iron mass. In the 
calculation, the value of stator winding phase resistance is determined at the rated working temperature using an 
adequate transformation coefficient. In the calculation of the stator phase winding length also, the end windings are 
taken into account, as it will be presented latter on. This is only a partial presentation of the system of equations for 
the detailed mathematical model of the motor that have been defined and implemented in the optimisation algorithm, 
taking into account all aspects of the design process without any assumptions. The optimisation is performed for 
a number of runs, and the results of the best solution gained from the GA optimisation of the efficiency function in 
comparison with the prototype are presented in Table 1. During the optimisation process, each variable is varied 
within its lower and upper bound. The limits of the boundaries are determined as + or – 10% of the initial value for 
each variable.

3.2.	 Cogging	torque	–	single	objective
The permanent magnet motors are electrical machines that are widely used in high-performance industrial drives 
as a result of their high torque density, high efficiency, and high power–volume ratio. Unfortunately, it is not all bright 
as it seems. The presence of the cogging torque in these types of motors throws a shadow on their performance 
characteristics, especially in applications sensitive to torque ripple. Cogging torque is an undesirable phenomenon 
in permanent magnet motors and is primarily caused by the interaction between the stator teeth and the permanent 
magnets on the rotor. This interaction leads to torque fluctuations during motor operation, which can affect the 

Parameters Lower bound Upper bound Prototype GA-1 solution

Rro (m) 0.0378 0.0442 0.042 0.0378

fm (/) 0.81 0.99 0.9 0.91469

hm (m) 0.0018 0.0022 0.002 0.0022

g (m) 0.00072 0.00088 0.0008 0.00072

L (m) 0.081 0.099 0.09 0.09899

Efficiency (/) – – 0.8489 0.8804

GA, genetic algorithm.

Table 1.  GA optimisation parameter initial values, boundaries, and optimisation results for efficiency optimisation.
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smoothness and precision of motion, making it especially problematic in applications with strict torque requirements. 
In general, the torque pulsations are produced as a result of:

•  The variations in the air gap’s permeance caused by the geometry of the stator slots and the interaction 
between the rotor magnetic flux and the air gap. Cogging torque is primarily associated with the motor’s 
physical design.

•  Beyond the cogging effect, torque ripple can also be generated during the motor’s operation, which is 
influenced by the control strategy and the specific conditions under which the motor is used.

The minimisation of the cogging torque in the permanent magnet motors is of great importance and is generally 
achieved by a special motor design, which in the design process involves a variety of many geometrical motor 
parameters, while the torque ripple generated by the control strategy is minimised through the improvement of 
those control strategies.

The cogging torque is a function of rotor position and contains higher-order harmonic components, which can make 
its formulation and optimisation challenging. The formulation of the cogging torque presented in Gieras (2004) seems 
suitable for this work and provides a basis for defining the peak value of cogging torque as an objective function in the 
optimisation process. The definition of the cogging torque is quite simple and defined in the function of the basic motor 
parameters. Such a definition of the peak value of the cogging torque can be easily used as an objective function in 
an optimisation process (Cvetkovski and Petkovska, 2021). The simplified version of the formulation of the peak value 
of the cogging torque, which is the objective function of the optimisation, is presented by Eq. (9):
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where g is the air gap length, L is the axial length of the motor, D1in is stator inner diameter, AT is a motor coefficient, 
Bg is the average air gap flux density, and kc is Carter’s coefficient. The coefficient AT is equal to:

 AT = 2·ksk
2·kok

2· (g/τs) ·Bg (10)

where ksk is a stator skew factor, kok is a stator opening slot factor, and τs is the stator slot pitch. In the optimisation 
of the cogging torque, the following motor parameters have been selected as optimisation parameters: outside 
radius of the rotor iron core Rro, permanent magnet fraction fm, permanent magnet radial height hm, air-gap g, axial 
active length of the motor L, and slot opening bso. In the text that follows, a detailed presentation of each parameter 
shown in Eq. (9) will be given, as well as a presentation of all the parameters that will appear in the equations that 
will follow. Therefore, the Carter’s coefficient kc is defined as:
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where bso is the stator slot opening, gc = g + hm/mr is the average air gap, mr is the relative permeability of the 
permanent magnets, and τs is the stator slot pitch in the air gap that is equal to:
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in which Rro is the outside radius of the rotor core and is one of the optimised parameters. Z is the total number of 
stator slots and hm is the height of the permanent magnet in the radial direction. For this type of motor, the value of 
the air gap flux density can be calculated using the following equation:
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where Br is the residual flux density of the permanent magnets, kml is the flux leakage coefficient, and Cf is the flux 
concentration coefficient and is defined as:
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In which fm is the permanent magnet fraction and it is also one of the optimised motor parameters. Pc is the motor 
permeability coefficient and it is defined as:
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The flux leakage coefficient kml can be expressed as:
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In the previous equation, pmτ  is the pole pitch along the outer rotor line and all the other parameters are defined 
previously. This parameter is defined as:
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where Rro is the outer rotor core radius and it is one of the variable parameters. During the optimisation process, 
each variable is varied within its lower and upper bound.

The presented mathematical model of the cogging torque is fully integrated in the GA that is used as an 
optimisation tool. The results from the cogging torque optimisation in comparison with the prototype are presented 
in Table 2. It is evident that the optimised solution has a reduced value of the cogging torque in comparison to the 
prototype.

3.3.	 Total	mass	of	active	materials	–	single	objective
Due to the fact that the permanent magnet motors have high power–volume ratio, the third objective function that 
is defined and used in the optimisation process is the total mass of the active materials used for the construction 
of the PM motor. By active materials, it is meant the iron used for the stator and rotor core, the copper used for the 
stator windings and the permanent magnets. The optimisation parameters used for this optimisation procedure are 
the same as the ones presented for the cogging torque as an objective function. The objective function in this case 
is defined with Eq. (18).

 ( ) , , , , , 
S Rtot ro m m so Fe Cu PM FeObjective function m R f h g L b m m m m= = + + +  (18)

Parameters Lower bound Upper bound Prototype GA-2 solution

Rro (m) 0.0378 0.0442 0.042 0.03781

fm (/) 0.81 0.99 0.9 0.81

hm (m) 0.0018 0.0022 0.002 0.0018

g (m) 0.00072 0.00088 0.0008 0.00088

L (m) 0.081 0.099 0.09 0.081

bs (m) 0.002 0.002478 0.002278 0.0020

Tcogging (Nm) – – 1.0656 0.944

GA, genetic algorithm.

Table 2. GA optimisation parameter initial values, boundaries, and optimisation results for cogging torque optimisation.
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The total mass of the stator iron core is defined as a sum of the total mass of the stator yoke and the stator teeth:

 S SY StFe Fe Fem m m= +  (19)

where 
SYFem  is the total mass of the stator yoke and 

StFem  is the total mass of the stator teeth. They are determined 
using the following equations:

 SY S SYFe Fe Fem Vγ= ⋅  (20)

 ( )2 2
SYFe So SY FeV R R Lπ= − ⋅  (21)

 St S StFe Fe Fem Vγ= ⋅  (22)

 ( )2 2
StFe SY s s FeV R R N A Lπ = − − ⋅   (23)

where 
SFeγ  is the stator steel mass density, 

SYFeV  is the stator yoke volume, FeL  is the axial length of the iron core, SoR  
is the outer (external) stator radius, SYR  is the inner radius of the stator yoke, 

StFeV  is the total stator teeth volume, R 
is the inner stator (bore) radius, sN  is the number of stator slots, and sA  is the single slot bare total area.

The total copper mass is defined as:

 Cu Cu Cum Vγ= ⋅  (24)

 3Cu Cu CuV a L= ⋅  (25)

where Cuγ  is the copper mass density, CuV  is the volume of the copper, Cua  is the copper wire cross-section, and CuL
is the copper wire length of one phase winding and it is defined with the following equation:

 1Cu ph tL N L= ⋅  (26)

 ( )
1

2t ewL L L= +  (27)

where phN  is the number of turns per phase, 
1tL  is the length of one turn, L is the axial length of the motor, and ewL  

is the mean value of the front and rear end winding.
The total mass of the permanent magnets is defined as:

 PM PM PMm Vγ= ⋅  (28)

 ( )2 2
PM R ro PMV R R f Lπ= − ⋅ ⋅  (29)

where PMγ  is the permanent magnet mass density, PMV  is the volume of the permanent magnets, PMf  is the 
permanent magnet fraction, and L is the axial length of the motor, RR  is the outer rotor radius with the PM, and  
is outside radius of the rotor iron core.

The total mass of the rotor iron core is defined as:

 R R RFe Fe Fem Vγ= ⋅  (30)

 ( )2 2
RFe R Rsh FeV R R Lπ= − ⋅  (31)

where RFeγ  is the rotor core mass density, 
RFeV  is the volume of the rotor iron core, RR  is the rotor iron core radius, RshR  

is the rotor shaft radius, and FeL  is the axial length of the iron core. The results from the optimisation of the total active 
materials motor mass are presented in Table 3. Single objective function optimisation not always gives satisfactory 
results in the overall performance of the motor or in relation to other motor parameters. The conclusion is drawn 
based on the comparative results, shown in Table 4, for all previously presented single-objective solutions in relation 
to the prototype in which all the investigated objective functions are compared. From the presented data, it can be 
concluded that with a single-objective optimisation beside the improvement of the main objective parameter the 
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other motor parameters (objectives) in some cases were improved, but in others cases were worsened. Therefore, 
in this work, an attempt is made to combine the previously presented single-objective optimisation and perform 
a multi-objective optimisation with different optimisation functions as combinations of the previously used single-
objective functions. They are going to be presented in the text that follows.

3.4.	 Multi-objective	function	–	f1	that	is	a	combination	of	efficiency	and	cogging	torque
The first defined and used multi-objective function is the function f1 defined as a difference between the efficiency 
function of the motor and the scaled cogging torque function, as presented with Eq. (32). Detailed presentation of 
both functions is shown in the text previously.

 1 1 coggingMulti objective function f Efficiency k T− = = − ⋅  (32)

where efficiency is the efficiency function of the analysed motor, cogingT  is the cogging torque function, and k1 is a 
variable parameter that is used as a scaling factor for the cogging torque function in relation to the efficiency, that 
is defined as a separate optimisation parameter and it is generated randomly by the GA. With this approach, the 
idea is to give a random value to the scaling factor during the optimisation process rather than a constant one, 
which gives more freedom to the optimisation search. In Table 5, few specific solutions that have competitive results 

Parameters Lower bound Upper bound Prototype GA-3 solution

Rro (m) 0.0378 0.0442 0.042 0.0378

fm (/) 0.81 0.99 0.9 0.8101

hm (m) 0.0018 0.0022 0.002 0.0022

g (m) 0.00072 0.00088 0.0008 0.00088

L (m) 0.081 0.099 0.09 0.08101

Mass (kg) – – 8.7937 8.0521

GA, genetic algorithm.

Table 3. GA optimisation parameter initial values, boundaries, and optimisation results for total mass of active materials optimisation.

Parameters Prototype GA-1 solution GA-2 solution GA-3 solution

Efficiency (/) 0.8489 0.8804 0.837 0.8465

Tcogging (Nm) 1.0656 1.2051 0.9442 0.8234

Mass (kg) 8.7937 9.6243 8.3601 8.0521

GA, genetic algorithm.

Table 4. Comparative results of the single-objective GA optimisations.

Parameters Prototype GA-4 solution GA-5 solution GA-6 solution

Rro (m) 0.042 0.037805 0.037804 0.037805

fm (/) 0.9 0.900882 0.810072 0.810054

hm (m) 0.002 0.002199 0.0022 0.0018

g (m) 0.0008 0.00072 0.00072 0.00072

L (m) 0.09 0.098975 0.098982 0.094315

bs (m) 0.002278 0.002 0.002 0.002001

Efficiency (/) 0.8489 0.881 0.8788 0.8687

Tcogging (Nm) 1.0656 1.0224 0.8844 0.7631

Mass (kg) 8.7937 9.62855 9.57919 9.2007

GA, genetic algorithm.

Table 5. Comparative results of the multi-objective GA optimisations for function f1.
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regarding the two investigated optimised functions are presented. The difference of the optimal solutions is due to 
the different value of the scaling factor reached by the GA. The GA-4 solution has the lowest value for k1 = 0.01, for 
the GA-5 solution it is k1 = 0.05, and for GA-6 it is k1 = 0.3.

It can be concluded that when the value of the scaling factor is small, then the influence of the cogging torque 
function is decreased and solutions are gained with high efficiency and high value of the total mass, but, on the 
other hand, the cogging torque is with lower value than the prototype, but still not with the lowest value. If the scaling 
factor value is increased, then the influence of the cogging torque in the multi-objective function is increased and 
therefore the solutions have lower value for the multi-objective function that leads to lower value for the efficiency 
and total mass of the motor, but a better value for the cogging torque. In this case, the change of the value of the 
total mass of the motor is due to the change of the other optimised functions, but not directly from the optimisation 
process of the multi-objective function. This case will be investigated later on.

3.5.	 Multi-objective	function	–	f2	as	a	combination	of	efficiency	and	total	active	material	mass
A similar approach has been realised in this case where the multi-objective function f2 is defined as a difference 
between the efficiency and the scaled total motor mass, as presented in Eq. (33).

 2 2. . totMulti obj funct f Efficiency k m− = = − ⋅  (33)

where efficiency is the efficiency function, mtot is the total active material mass of the motor, and k2 is a variable 
parameter that is used as a scaling factor for the motor mass in relation to the efficiency and it is generated 
randomly by the GA. In Table 6, few specific solutions that have competitive results regarding the two investigated 
optimised functions are presented. In this case, the values for the scaling factor k2 are: for GA-7 solution k2 = 0.001, 
for GA-8 solution k2 = 0.01, and for GA-9 k2 = 0.03. Similar conclusions can be drawn as in the previous optimisation 
case regarding the influence of the parameters and the values of the optimised functions in the multi-objective 
optimisation process. From the presented data in Table 6, it is evident that solution GA-9 has a bit higher value of 
the motor efficiency in relation to the prototype, but, on the other hand, a significant improvement (decrease) of the 
total active material mass and the value of the cogging torque of the motor.

3.6.	 	Multi-objective	function	–	f3	as	a	combination	of	efficiency,	cogging	torque,	and	total	
active material mass

In the last analysed case, the objective function f3 is defined as a difference between the efficiency function of the 
motor, the scaled cogging torque function, and the scaled total active material mass function, as presented with 
Eq. (34).

 3 1 2  cogging totMulti objective function f Efficiency k T k m− = = − ⋅ − ⋅  (34)

where efficiency is the efficiency function of the investigated motor, coggingT  is the cogging torque function, mtot is the 
total active material mass function, k1 is a variable parameter that is used as a scaling factor for the cogging torque 
function in relation to the efficiency, k2 is a variable parameter that is used as a scaling factor for the motor mass 

Parameters Prototype GA-7 solution GA-8 solution GA-9 solution

Rro (m) 0.042 0.037803 0.037803 0.037803

fm (/) 0.9 0.90772 0.836064 0.810558

hm (m) 0.002 0.00219 0.002199 0.002199

g (m) 0.0008 0.00072 0.00072 0.00072

L (m) 0.09 0.098975 0.09516 0.081003

bs (m) 0.002278 0.002002 0.002001 0.002001

Efficiency (/) 0.8489 0.88096 0.87578 0.8552

Tcogging (Nm) 1.0656 1.0234 0.8899 0.7245

Mass (kg) 8.7937 9.63217 9.27298 8.08164

GA, genetic algorithm.

Table 6. Multi-objective results for f2 function.
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and they are both generated randomly by the GA in a range from 0 to 1. In Table 7, three specific solutions that 
have competitive results regarding the three investigated optimisation functions are presented. The difference of the 
optimal solutions is due to the different values of the scaling factors reached by GA. Their values for the selected 
three solutions are: GA-10–k1 = 0.0024 and k2 = 0.002, GA-11–k1 = 0.01 and k2 = 0.01, and GA-12–k1 = 0.03 and 
k2 = 0.03. The solution GA-10 has the best value for the efficiency, where, on the other hand, solution GA-12 has 
the lowest values for the cogging torque and the total motor mass, while the value for the efficiency is the lowest 
among the solutions, but is better than the prototype. Solution GA-12 shows the benefit from the multi-objective 
optimisation of the PMSM in which the three optimisation functions are confronted and an optimal solution can be 
reached satisfying the three functions. It is evident that by favouring one of the optimisation functions, different 
solutions are reached, and therefore it is up to the designer do decide to which function to give an advance in the 
optimisation process, based on the attributes that the optimised solution should have.

A graphical three-dimensional illustration of the 12 optimal solutions and the prototype in relation to the 
optimisation functions is presented in Figure 2. In the graph, some of the specific solutions are given with their 
values. Additionally, below, few selected solutions from the single- and multi-objective optimisation will be analysed.

Parameters Prototype GA-10 solution GA-11 solution GA-12 solution

Rro (m) 0.042 0.03780 0.037801 0.037801

fm (/) 0.9 0.900018 0.814302 0.810054

hm (m) 0.002 0.002199 0.002199 0.002199

g (m) 0.0008 0.000720 0.000720 0.000720

L (m) 0.09 0.098993 0.094844 0.081018

bs (m) 0.002278 0.002001 0.002001 0.002001

Efficiency (/) 0.8489 0.881 0.87465 0.8552

Tcogging (Nm) 1.0656 1.0217 0.8539 0.7239

Mass (kg) 8.7937 9.62948 9.23644 8.08297

GA, genetic algorithm.

Table 7. Multi-objective results for f3 function.

Fig. 2. Comparative presentation of the optimisation solutions (X axes is total motor mass, Y axes is cogging torque, and Z axes is efficiency).
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4.	 Comparative	Analysis	of	the	Proposed	Optimal	Solutions
4.1.	 Analytical	results
As an addition to the comparative analysis of the proposed optimisation solutions in Table 8, the values of several 
motor parameters for the selected optimal solutions in relation to the prototype are presented. The motor parameters 
are determined analytically using the same mathematical model used for the optimisation process. Based on the 
presented values of the parameters in those tables, as well as in the previous ones, it can be concluded that GA-10 
is the solution with the best efficiency, GA-12 is with the smallest value of the cogging torque, and GA-3 is with the 
lowest value for the total motor mass.

The GA-12 solution has also a quite a good value for the total motor mass close to the value of solution GA-9. 
If all three optimisation functions are taken under consideration, then solution GA-12 could be a very competitive 
solution because it has the lowest value for the cogging torque, quite a low total mass close to the best solution, 
and an improved efficiency in relation to the prototype. Of course, other solutions can also be selected depending 
on what optimisation function the advantage will be given in relation to the other functions, but this is a decision that 
the motor designer will have to make regarding the motor application and the overall motor performance. In general, 
with multi-objective optimisation, better motor solutions are reached in comparison with single-objective optimisation 
with many improved motor parameters rather than only one. This job can be made a bit easier if all those solutions 
are put in a Pareto analysis or use a many-objective optimisation approach (Di Barba et al., 2019, 2022).

In performance analysis of electrical machines, it is a practice to realise a 2D or 3D finite element analysis (FEA) 
(Bianchi, 2005; Gebregergis et al., 2014; Hameyer and Belmans, 1999; Ruuskanen et al., 2016). Therefore, in the 
following text, such an analysis will be performed on all the presented solutions in Table 8.

4.2. FEA
In the past few decades, the FEM and FEA have become a standard practice and procedure in electromagnetic 
devices, as well as electrical machines performance and characteristics analysis. In this work, the same practice 
will be implemented on the prototype and the optimised motor models presented in Table 8. The finite element 
calculations and analysis are performed using the software package Infolitica (User’s Manual, Inflolytica, 2016) and 
its module MotorSolve (User’s Manual, Infolytica, 2016). A presentation of the prototype modelled in this program 
is presented in Figure 1. All the other motor models gained from the optimisation process are modelled in a similar 
way. In the FEA, the materials used for the initial solution were also used for all the other investigated optimised 
models, and they are the same as in the physical model of the motor. This program package is used to determine 
the magnetic flux distribution in each motor model, as well as to determine the air gap flux density, cogging torque, 
and torque-speed characteristics for all analysed models.

4.3.	 Magnetic	field	distribution
The first physical quantity gained from the finite element calculation that is presented in this work is the magnetic 
field distribution shown in Figure 3 for all analysed models. Based on the presented field distributions, it can be 
concluded that there are no significant changes in the magnetic field distribution in all optimised models in relation 

Parameters Prototype GA-1
solution

GA-2
solution

GA-3
solution

GA-4
solution

GA-8
solution

GA-11
solution

GA-12
solution

N (turns) 9 8 9 11 8 8 9 10

Bg (T) 0.5868 0.6196 0.5436 0.54327 0.61828 0.58819 0.57718 0.57499

Rph (W) 0.1564 0.0922 0.1366 0.1397 0.0911 0.0832 0.1025 0.1172

PCu (W) 147.091 99.8456 166.0 152.731 99.1833 107.8732 109.7979 139.6815

PFest (W) 17.357 20.393 15.915 15.16 20.31895 18.65522 18.2830 15.56525

mCu (kg) 1.5979 2.3287 1.7486 2.4276 2.3545 2.4854 2.5439 2.3781

mFeS (kg) 3.5878 4.131 3.218 3.0729 4.1157 3.7788 3.7034 3.153

mFeR (kg) 3.243 2.7605 3.0809 2.2588 2.7604 2.6537 2.6445 2.259

mPM (kg) 0.36497 0.40413 0.31259 0.29286 0.39795 0.35508 0.34464 0.29287

GA, genetic algorithm.

Table 8. Comparative optimisation results.
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Fig. 3. Magnetic field distribution for all analysed motor models.
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to the prototype. In Figure 3, beside the magnetic field distribution also, the different optimisation models’ shape 
can be noticed as a result of the optimisation. The predefined values for both parts of the stator iron core were 
defined as a constraint and it was set to a value of 1.8 (T). The average values of the flux density in the stator teeth 
and the stator back iron are in good agreement with the prescribed and calculated values for those parts for all 
optimised models. The limits of flux density values in the legend for all models are defined to be identical for better 
comparative analysis. 

4.4.	 Air	gap	flux	density	distribution
The air gap flux density can be determined using the data from the finite element calculations based on Eq. (35) 
shown below:

  rot=B A  (35)

The calculation of the air gap flux density distribution is realised for one pair of poles and is presented for all 
analysed models in Figure 4.

         

        

        

        

Fig. 4. Air gap flux density distribution for all analysed motor models.
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The average value of the air gap flux density under one pole is in good agreement with the calculated values 
presented in Table 8 for all analysed models. The pulsations of the air gap flux density are due to the influence of 
the stator teeth and slot openings on its value in the air gap.

4.5.	 Cogging	torque	distribution
The next parameter that has been calculated using FEA is the cogging torque. The shape of the cogging torque for 
each analysed model is presented in Figure 5. Most of them have the same shape, but the intensity of the torque 
varies for different motor models as a result of the variation of the motor design parameters. Their peak value is 
quite close to the value determined during the optimisation process and is in the range of ± 10%, which shows that 
the analytical method is quite accurate, as well as the values gained from it.

4.6.	 Torque	vs	speed	characteristic
The next motor characteristic that can be determined using the Motor-Solve program is the torque–speed 
characteristic. For the purpose of this analysis, this characteristic has been calculated and presented for all analysed 
models in Figure 6. This characteristic is adequate for the performance analysis of the investigated motor models. 
It can be noticed that there is a small variation of the developed electromagnetic torque among the various motor 
models that is due to the variation of the no load losses as a result of the motor efficiency optimisation (Shklyarskiy 
et al., 2021). But overall, the different motor models will develop the rated torque of 10 Nm in all the cases since this 
parameter is one of the optimisations constraints and it is kept constant for all solutions.

Fig. 5. Cogging torque distribution for all analysed motor models.

Fig. 6. Electromagnetic torque vs speed characteristics for all analysed motor models.
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Based on the presented graphs and diagrams, it can be concluded that the mathematical model that has been 
developed for the optimisation procedure is quite accurate. There is a good agreement between the values of the 
motor parameters calculated in the optimisation procedure and the values gained from the FEA, such as flux density 
values in the stator core, air gap flux density values, developed torque values, and cogging torque values. Some of 
those results are presented in the figures and some in the tables. This proves that the mathematical model defined 
for the optimisation procedure is quite adequate and takes into consideration all the aspects of the motor design.

5. Conclusion
In this paper, a GA is used in the optimisation process of a permanent magnet motor using the following three 
objective functions: motor efficiency, cogging torque, and total active materials motor mass, as well as their 
combinations in the multi-objective optimisation. These are critical factors in motor design, as efficiency affects 
energy consumption, cogging torque influences motor smoothness, and material mass affects cost and size.

As mentioned in this work, both single-objective and multi-objective optimisation approaches are explored. 
In single-objective optimisation, each of the three objective functions is optimised individually. In multi-objective 
optimisation, the functions are combined in different ways, such as pairs of two or all three functions simultaneously. 
This approach allows for trade-offs between conflicting objectives to be analysed. The paper presents selected 
results from these optimisation approaches. It is important to clarify what specific results were obtained, such as 
optimised values for motor parameters under different optimisation scenarios. A comparative analysis is conducted 
to assess the outcomes of the various optimisation approaches. This analysis can provide insights into the strengths 
and weaknesses of different optimisation strategies and the trade-offs between objectives.

Finally, at the end, a traditional FEM analysis is performed for the initial solution and a selected number of 
optimised solutions in order to validate and understand the optimised designs through more detailed analysis.
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