Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 2 | 309--320
Tytuł artykułu

Effect of Drying Temperature of Sawdust Biobriquettes with Used Lubricant Oil Adhesive Volume Variation over Carbonization Process

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Renewable energy is one way to deal with the scarcity of fossil energy. Biobriquette is an alternative energy that can be used as a substitute for fuel. This research aims to determine the characteristics of each variation of biobriquettes, namely moisture content, ash content, volatile matter content, bound carbon content, calorific value, and combustion test. The raw material is sawdust of Sungkai wood (Peronema canescens Jack) with carbonization method at 300 °C for 1 hour. This study used an experimental method by varying the sawdust weight of 8.7 g, 17.4 g, 26.1 g, 34.8 g with a ratio of 2:1 for each raw material and adhesive used lubricant oil. In addition, the drying temperature of the briquettes is also varied by 80 °C (A) and 100 °C (B). Biobriquettes 4B had the best moisture content and ash content with the lowest levels of 5.98% and 1.54 %, respectively. The levels of volatile matter and fixed carbon levels are closest to Energy and Mineral Ministry Regulation Number 47 of 2006 (PERMEN ESDM) namely 4A briquettes of 59.44% and 1B briquettes with a content of 31.57%. Almost all samples met the standard for calculating the calorific value of Energy and Mineral Ministry Regulation Number 47 of 2006 (minimum 4400 cal/gr) with a the result of 4512–4850 cal/g. The ignition time of all samples was in the range of 9.67–17.9 seconds, it is faster than the ignition time of coal in the range of 286 seconds. The fastest burning time was sample 3B with a time of 19.83 minutes and the longest was sample 4A with a time of 38.95 minutes. The briquettes that had the best performance in boiling 100 ml of water were 4B briquettes with a burning temperature of 462.3 °C, a burning rate of 0.4501 and a boiling time of 2.48 minutes.
Wydawca

Rocznik
Strony
309--320
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia, rizkawulandariputi@unsri.ac.id
autor
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia
Bibliografia
  • 1. Achebe, C.H., Umeji, A.C., Chukwuneke, 2018. Energy evaluation of various composition of biomass waste briquettes, Advance Research, 13(6), 1–11.
  • 2. Afsal, A., Robin, D., Baiju, V., Muhammed, S.N., Parvaty, U., Rakhi, R.B., 2020. Experimental investigations on combustion characteristics of fuel briquettes made from vegetable market waste and saw dust. Materials Today: Proceedings, 33, 3826–3831.
  • 3. Ajimotokan, H.A., Ehindero, A.O., Ajao, K.S., Adeleke, A.A., Ikubanni, P.P., Shuaib-Babata, Y.L. 2019. Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Scientific African, 6, 1-9.
  • 4. Arbi, Y., dan Irsad, M. 2018. Utilization of palm oil shell waste into charcoal briquettes as an alternative fuel. Journal of Civil Engineering and Vocational Education, 5(4), 1-8. (In Indonesian)
  • 5. Arifah, R. 2017. The presence of bound carbon in charcoal briquettes is influenced by the ash content and the vapor content. Wahana Innovation, 6(2), 365-377. (In Indonesian)
  • 6. Campos, P., Miller, A.Z., Knicker, H., Costa-Pereira, M.F., Merino, A., De la Rosa, J.M. 2022. Chemical, physical and morphological properties of biochars produced from agricultural residues: implications for their use as soil amendment. Waste Management, 105, 256–267.
  • 7. Davies, R.M., Davies, O.A., 2013. Physical and combustion characteristics of briquettes prepared under modest die pressures. Biomass and Bioenergy, 1-7.
  • 8. Demirbas, A. 1997. Calculation of Higher Heating Values of Biomass Fuels. Elsevier Science, 76 (5), 431-434.
  • 9. Dermibas, 2007. Effects of Moisture and Hydrogen Content on the Heating Value of Fuels. Energy Sources, 7, 649-655
  • 10. Faizal, M. 2017. Utilization Biomass and Coal Mixture to Produce Alternative Solid Fuel for Reducing Emission of Green House Gas. International Journal on Advanced Science Engineering and Information Technology, 7(3), 950-956.
  • 11. Garcia R., Pizarro C., Lavín A.G., Bueno J.L., 2012, Bioresource technology characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103 (1), 249-258.
  • 12. Harnawan, B.Y., dan Radityaningrum, A.D. 2019. Quality of Biobriquettes from a Mixture of Bioslurry and Rice Husk as an Alternative Fuel. Proceedings of the National Seminar on Applied Science and Technology VII, 335–339. (In Indonesian)
  • 13. Ilochi, N.O. 2010. Comparative Analysis of Coal Briquette Blends with Groundnut Shell and Maize Cob M.Eng, Thesis, Departement of Pure and Industrial Chemistry, Ninamdi Azikwe University, Awka, Nigeria.
  • 14. Kebede, T., Dargie, T.B., Yohannes, Z. 2022. Combustion Characteristics of Briquette Fuel Produced from Biomass Residues and Binding Materials. Hindawi Journal of Energy, 1-10.
  • 15. Kurniawan, F.A., Syukron, A.A. 2019. Characteristics of Bioarang Briquettes from a Mixture of Oyster Mushroom Baglog Waste (Pleurotus ostreatus) and Rice Husks. Indonesian Journal of Applied Physisc, 9(2), 76-83. (In Indonesian)
  • 16. Loo, S.V., Koppejan, J. The Handbook of Biomass Combustion and Co-Firing. Earthscan, UK. London.
  • 17. Nazhipkyzy, M., Maltay, A.B., Askaruly, K., Assylkhanova, D.D., Seitkazinova, A.R., Mansurov, Z. A. 2022. Biomass-Derived Porous Carbon Materials for Li-Ion Battery. Nanomaterials, 12(20), 3710.
  • 18. Onchieku, J.M., Chikamai, B.N., Rao M.S., 2014. Optimum parameters for the formulation of charcoal briquettes using bagasse and clay binder. European Journal of Sustainable Development, 1, 477–492.
  • 19. Ramadhan, D.I., Praswanto, D.H. 2022. Utilization of Used lubricant oil as a Mixture of Cloth Aval Briquettes and Wood Sawdust on Burning Rates and Flames. National Seminar 2022, 289-294. (In Indonesian)
  • 20. Sari, P.N., Aminah, S. 2020. Utilization of Sawdust as Raw Material for Briquettes. Media Eksakta, 16(2), 98-104. (In Indonesian)
  • 21. Sengar, S.H., Mohod, A.G., Khandetod, Y.P., Patil, S.S. & Chendake A.D. 2012. Performance of Briquetting Machine for Briquette Fuel International Journal of Energy Engineering, 2(1): 28-34
  • 22. Sisay, F., Fikremariam, H., Degnechew G., 2020. Production and characterization of charcoal briquette from Oxytenanthera abyssinica, Arundinaria alpina, Acacia melifera and Prosopis juliflora. Journal of Scientific and Innovative Research, 9 (1), 16–21.
  • 23. Sugiharto, A., Zidni., Firdaus, I. Making sugarcane bagasse and rice husk briquettes using the pyrolysis method as alternative energy. Chemical Engineering Innovation, 6(1), 17-22. (In Indonesian)
  • 24. Suhartoyo., Sriyanto., Yulianto, Y. 2019. Alternative energy source from cashew seed shells. Proceedings of the National Seminar on Science and Technology, 27-31. (In Indonesian)
  • 25. Sunday, Y., Kpalo, M., Faiz, Z., Latifah, A. M., Ahmad, M., 2020, Production and characterization of hybrid briquettes from corncobs and oil palm trunk bark under a low pressure densification technique, Sustainability, 12(6), article 2468.
  • 26. Tanui, J.K., Kioni, P.N., Kariuki, P.N., dan Ngugi, J.M. 2018. Influence of processing conditions on the quality of briquettes produced by recycling charcoal dust. International Journal of Energy and Environmental Engineering, 9(1), 341-350.
  • 27. Utomo, S. 2015. Making Briquettes from Sawdust and Used lubricant oil. Simposium National Technology Terapan (SNTT). (In Indonesian).
  • 28. Waweru., Josephat., Chirchir, D.K.,2017. Effect of briquette sizes and moisture contents on combustion characteristics composite briquettes. International Journal of Innovative Science, Engineering & Technology, 4(7), 102-111.
  • 29. Yuniarti., Theo, Y. P., Faizal, P., dan Arhamsyah. 2011. Charcoal briquettes from meranti wood sawdust and galam wood charcoal. Forest Products Industry Research Journal. Vol. 3(2): 38-43 (In Indonesian).
  • 30. Zhao, Y., Zhang, Y., Zhang, H., Wang, Q., Guo, Y. 2015. Structural characterization of carbonized briquette obtained from anthracite sawdust. Journal of Analytical and Applied Pyrolysis, 290–297.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1631d0fe-9697-477b-9921-df06473c759c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.