Czasopismo
1999
|
Vol. 19, Fasc. 2
|
421--428
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Recently K. Sato constructed an infinitely divisible probability distribution μ on Rd such that μ is not selfdecomposable but every projection of μ to a lower dimensional space is selfdecomposablc. Let Lm (Rd), 1 ≤ m < ∞, be the Urbanik-Sato type nested subclasses of the class L0 (Rd) of all selfdecomposable distributions on Rd. In this paper, for each 1 ≤ m < ∞, a probability distribution μ with the following properties is constructed: μ belongs to Lm-1 (Rd) ∩ (Lm (Rd))c, but every projection of μ to a lower k-dimensional space belongs to Lm (Rk). It is also shown that Sato's example is not only "non-selfdecomposable" but also "non-semi-selfdecomposable."
Czasopismo
Rocznik
Tom
Strony
421--428
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
autor
- Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
autor
- Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
Bibliografia
- [1] Z. J. Jurek, The classes Lm (Q) of probability measures on Banach spaces, Bull. Polish Acad. Sci. Math. 31 (1983), pp. 51-62.
- [2] M. Maejima and Y. Naito, Semi-selfdecomposable distributions and a new class of limit theorems, Probab. Theory Related Fields 112 (1998), pp. 13-31.
- [3] G. Samorodnitsky and M. S. Taqqu, Stable Nan-Gaussian Random Processes, Chapman and Hall, New York-London 1994.
- [4] K. Sato, Class L of multivariate distributions and its subclasses, J. Multivariate Anal. 10 (1980) pp. 207-232.
- [5] - Multivariate distributions with selfdecomposable projections, J. Korean Math. Soc. 35 (1998), pp. 783-791.
- [6] - and M. Yamazato, Operator-selfdecomposable distributions us limit distributions of processes of Ornstein-Uhlenbeck type, Stochastic Process. Appl. 17 (1984), pp. 73-100.
- [7] D. N. Shanbhag and M. Sreehari, An extension of Goldie's result and further results in infinite divisibility, Z. Wahrsch. verw. Gebiete 47 (1979), pp. 19-25.
- [8] K. Urbanik, Self-decomposable probability distributions on Rm, Zastos. Mat. 10 (1969), pp. 91-97.
- [9] - Slowly varying sequences of random variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), pp. 679-682.
- [10] - Limit laws for sequences of normed sums satisfying some stability conditions, in: Multivariate Analysis-III, P. R. Krishnaiah (Ed.), Academic Press, New York 1973, pp. 225-237.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-16080793-2cdc-44b4-ac4b-c6ac9cc57009