Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 10 | 42--52
Tytuł artykułu

Insight into Nano Zero-Valent-Copper Process for Degradation Dye Wastewater–Optimization by Box-Behnken Design and Toxicity Evaluation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on utilization of a zero-valent metal (zero-valent iron, zero-valent aluminum, and nanoscale zerovalent copper) in conjunction with H2O2 conducted to treat real dye wastewater. Box-Behnken methodology was applied to describe effects of five independent factors involved in optimization of advanced oxidation system, which was type of zero-valent metals, dosage of zero-valent metals, pH, time and dosage of H2O2, for treating dye wastewater. Correlation coefficients for model, shown by the value R2, were 0.9996 for removing color and 0.9708 for reducing COD. Mass of nZVC equaled 1.09 g/L, H2O2 equaled 5.39 mg/L were found to be the optimal reaction conditions when the pH was equal to 3.71. After 120 minutes of optimal settings, there was a reduction of 87.3% in COD and 98.72% in color of dye wastewater after heterogeneous treatments (nZVC/H2O2). The reusability of nZVC for degrading dye wastewater has been tested in four cycles and showed up to 70% COD removal. Ecotoxicological testing indicated that the raw textile effluent was extremely toxic to Chlorella sp. and V. fischeri. Even while wastewater after treatment collected definitely had a lower toxicity level with both V. fischeri and Chlorella sp. This research findings highlight the nZVC/H2O2 process as a feasible and effective method for real dye wastewater treatment and detoxification, positioning it as a valuable alternative oxidation process for treating organic contaminants.
Wydawca

Rocznik
Strony
42--52
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Faculty of Chemistry and Environment, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam, nthoa@tlu.edu.vn
  • Faculty of Chemistry and Environment, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam, nguyen.n.t@tlu.edu.vn
Bibliografia
  • 1. Abdel-Aziz H.M., Farag R.S., Abdel-Gawad S.A., 2021. Removal of inorganic contaminant phosphate from aqueous solutions by bimetallic Ficus-ZVFe/ Cu nanoparticles. Int. J. Environ. Eng. 11, 53–68. https://doi.org/10.1504/IJEE.2021.113775
  • 2. Abdelfatah A.M., Fawzy M., Eltaweil A.S., ElKhouly M.E., 2021. Green synthesis of nanozero-valent iron using ricinus communis seeds extract: Characterization and application in the treatment of methylene blue-polluted water. ACS Omega 6, 25397–25411. https://doi.org/10.1021/ acsomega.1c03355
  • 3. Adachi A., Ouadrhiri F.E., Kara M., El Manssouri I., Assouguem A., Almutairi M.H., Bayram R., Mohamed H.R.H., Peluso I., Eloutassi N., Lahkimi A., 2022. Decolorization and degradation of methyl orange azo dye in aqueous solution by the electro fenton process: Application of optimization. Catalysts. https://doi.org/10.3390/catal12060665
  • 4. Angai J.U., Ptacek C.J., Pakostova E., Bain J.G., Verbuyst B.R., Blowes D.W., 2022. Removal of arsenic and metals from groundwater impacted by mine waste using zero-valent iron and organic carbon: Laboratory column experiments. J. Hazard. Mater. 424, 127295. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.127295
  • 5. Arslan-Alaton I., Aytac E., Kusk K., 2014. Effect of Fenton treatment on the aquatic toxicity of bisphenol A in different water matrices. Environ. Sci. Pollut. Res. Int. 21. https://doi.org/10.1007/ s11356-014-2877-9
  • 6. Dadban Shahamat Y., Masihpour M., Borghei P., Hoda Rahmati S., 2022. Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using Box-Behnken design. Inorg. Chem. Commun. 143, 109785. https://doi.org/ https://doi.org/10.1016/j.inoche.2022.109785
  • 7. Eljamal O., Thompson I.P., Maamoun I., Shubair T., Eljamal K., Lueangwattanapong K., Sugihara Y., 2020. Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal. J. Mol. Liq. 299, 112144. https://doi.org/https://doi.org/10.1016/j.molliq.2019.112144
  • 8. García J.C., Pedroza A.M., Daza C.E., 2017. Magnetic Fenton and Photo-Fenton-Like catalysts supported on carbon nanotubes for wastewater treatment. Water, Air, Soil Pollut. 228, 246. https://doi.org/10.1007/s11270-017-3420-7
  • 9. Garg N., Garg A., Mukherji S., 2022. Sequential treatment of simulated textile wastewater using zero-valent aluminum under alkaline conditions and biodegradation. J. Clean. Prod. 379, 134733. https://doi.org/10.1016/j. jclepro.2022.134733
  • 10. Ghanbari F., Moradi M., Manshouri M., 2014. Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: Compared with zero valent copper. J. Environ. Chem. Eng. 2, 1846–1851. https://doi.org/10.1016/j.jece.2014.08.003
  • 11. Ghorbanian Z., Asgari G., Samadi M.T., Seid-mohammadi A., 2019. Removal of 2,4 dichlorophenol using microwave assisted nanoscale zero-valent copper activated persulfate from aqueous solutions: Mineralization, kinetics, and degradation pathways. J. Mol. Liq. 296, 111873. https://doi.org/https://doi. org/10.1016/j.molliq.2019.111873
  • 12. Hoa N.T., Nguyen H., Nguyen L., Do K.N., Vu L.D., 2020. Efficient removal of ciprofloxacin in aqueous solutions by zero-valent metal-activated persulfate oxidation: A comparative study. J. Water Process Eng. 35, 101199. https://doi.org/10.1016/j.jwpe.2020.101199
  • 13. Jaafarzadeh N., Takdastan A., Jorfi S., Ghanbari F., Ahmadi M., Barzegar G., 2018. The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment. J. Mol. Liq. 256, 462–470. https://doi.org/https://doi. org/10.1016/j.molliq.2018.02.047
  • 14. Jorge N., Teixeira A.R., Gomes A., Lucas M.S., Peres J.A., 2023. Removal of azo dye Acid Red 88 by Fenton-Based processes optimized by response surface methodology Box-Behnken Design. Eng. Proc. https://doi.org/10.3390/ASEC2023-15501
  • 15. Khue D.N., Bach V.Q., Binh N.T., Minh D.B., Nam P.T., Loi V.D., Nguyen H.T., 2021. Removal of nitramine explosives in aqueous solution by UV-mediated advanced oxidation process in near-neutral conditions. J. Ecol. Eng. 22, 232–243. https://doi.org/10.12911/22998993/137074
  • 16. Lee C.-L., Jou C.-J.G., Wang H.P., 2010. Enhanced degradation of chlorobenzene in aqueous solution using microwave-induced zero-valent iron and copper particles. Water Environ. Res. 82, 642–647. https://doi.org/10.2175/10614300 9X12529484816033
  • 17. Liang J., Ning X., Sun J., Song J., Lu J., Cai H., Hong Y., 2018. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand. Ecotoxicol. Environ. Saf. 166, 56–62. https://doi.org/https://doi.org/10.1016/j.ecoenv.2018.08.106
  • 18. Lin C.-C., Zhong Y.-H., 2023. Degradation of Orange G in water by nano-Cu0/H2 O2 process with nano-Cu0 synthesized in a rotating packed bed with blade packings. Mater. Chem. Phys. 295, 127097. https://doi.org/https://doi.org/10.1016/j. matchemphys.2022.127097
  • 19. Liu C., Zhang J., Wang Q., Zhang W., Zhou P., Hu S., Zhang G., 2018. Enhancement of ultrasound on oxidation of AO7 by nZVC peroxomonosulfate combined system. J. Water Supply Res. Technol. 67, 472–483. https://doi.org/10.2166/aqua.2018.015
  • 20. Nguyen H., Nguyen L., Dinh Thi Lan P., 2019. Optimization of copper removal by photovoltaic electrocoagulation from aqueous solution using response surface methodology towards sustainable development. J. Ecol. Eng. 20, 103–111. https://doi. org/10.12911/22998993/109881
  • 21. Raman C.D., Kanmani S., 2016. Textile dye degradation using nano zero valent iron: A review. J. Environ. Manage. https://doi.org/10.1016/j. jenvman.2016.04.034
  • 22. Raptis C.E., Juraske R., Hellweg S., 2014. Investigating the relationship between toxicity and organic sum-parameters.
  • 23. Raptis C.E., Juraske R., Hellweg S., 2014. Investigating the relationship between toxicity and organic sum-parameters in kraft mill effluents. Water Res. 66, 180–189. https://doi.or. Water Res. 66, 180–189. https://doi.org/10.1016/j.watres.2014.08.023
  • 24. Raut S.S., Kamble S.P., Kulkarni P.S., 2016. Efficacy of zero-valent copper (Cu0) nanoparticles and reducing agents for dechlorination of mono chloroaromatics. Chemosphere 159, 359–366. https://doi.org/ https://doi.org/10.1016/j.chemosphere.2016.06.031
  • 25. Shah N.S., Khan J.A., Sayed M., Iqbal J., Khan Z.U.H., Muhammad N., Polychronopoulou K., Hussain S., Imran M., Murtaza B., Usman M., Ismail I., Shafique A., Howari F., Nazzal Y., 2020. Nanozerovalent copper as a Fenton-like catalyst for the degradation of ciprofloxacin in aqueous solution. J. Water Process Eng. 37, 101325. https://doi.org/10.1016/j.jwpe.2020.101325
  • 26. Shakeel F., Haq N., Alanazi F.K., Alsarra I.A., 2014. Development of dilutable green nanoemulsions for removal of Eriochrome black T from aqueous solution and optimization by Box–Behnken design. J. Mol. Liq. 196, 340–347. https://doi. org/10.1016/j.molliq.2014.04.009
  • 27. Sun Y., Tian P., Ding D., Yang Z., Wang W., Xin H., Xu J., Han Y.-F., 2019. Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction. Appl. Catal. B Environ. 258, 117985. https://doi.org/10.1016/j. apcatb.2019.117985
  • 28. Tarkwa J.-B., Oturan N., Acayanka E., Laminsi S., Oturan M.A., 2019. Photo-Fenton oxidation of Orange G azo dye: process optimization and mineralization mechanism. Environ. Chem. Lett. 17, 473479. https://doi.org/10.1007/s10311-018-0773-0
  • 29. Thakur S., Chauhan M.S., 2018. Treatment of dye wastewater from textile industry by electrocoagulation and Fenton Oxidation: A review BT - Water quality management, in: Singh, V.P., Yadav, S., Yadava, R.N. (Eds.),. Springer Singapore, Singapore, 117–129.
  • 30. Xu Y., Lin Z., Zhang H., 2016. Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H2 O2 . Chem. Eng. J. 285, 392–401. https://doi.org/10.1016/j. cej.2015.09.091
  • 31. Zhou P., Zhang J., Zhang Y., Liang J., Liu Y., Liu B., Zhang W., 2016. Activation of hydrogen peroxide during the corrosion of nanoscale zero valent copper in acidic solution. J. Mol. Catal. A Chem. 424, 115–120. https://doi.org/10.1016/j. molcata.2016.08.022
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-15bcb71e-6cf2-4109-987d-6d7021171e79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.