Czasopismo
2018
|
Vol. 18, nr 3(57)
|
54--67
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to investigate the structural, thermal, optical and biocompatibility properties of poly(acrylic acid)(PAA)/organo-modified nanohydroxyapatite (OM-nHAp) nanocomposites synthesized by solvent intercalation method. The characterization of PAA/OM-nHAp nanocomposites was made by different techniques. SEM and TEM results showed that OM-nHAp particles were dispersed in the nanoscale into PAA matrix and that they were uniformly distributed within film. Glass transition temperature of PAA increased with OM-nHAp content. Ultraviolet (UV) absorbance experiments showed that PAA had a higher UV transmission than its nanocomposites. The biocompatibility of nanocomposites was also examined in simulated body fluid.
Czasopismo
Rocznik
Strony
54--67
Opis fizyczny
Bibliogr. 30 poz., rys., wykr., tab.
Twórcy
autor
- Balikesir University, Science and Technology Application and Research Center, Turkey
autor
- Balikesir University Faculty of Science and Literature Department of Molecular Biology and Genetics, Turkey
autor
- Balikesir University Faculty of Science and Literature Department of Chemistry, Turkey
autor
- Balikesir University Faculty of Science and Literature Department of Chemistry, Turkey, sdogan@balikesir.edu.tr
Bibliografia
- 1. Dutta, J., Hofmann, H. in: H.S. Nalwa (Ed.), in: Encyclopedia of Nanoscience and Nanotechnology, vol. 9, American Scientific Publishers, (2004), 617.
- 2. Sadat-Shojai, M., Khorasani, M.T., Jamshidi, A., Irani, S. Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: A comprehensive study on the structural and in vitro biological properties. Materials Science and Engineering C 33, (2013), 2776–2787.
- 3. Pon-On, W., Charoenphandhu, N., Tang, I.M., Teerapornpuntakit, J., Thongbunchoo, J., Krishnamra, N. Biocomposite of hydroxyapatite-titania rods (HApTiR): Physical properties and in vitro study. Materials Science and Engineering C 33, (2013), 251–258.
- 4. Hamad, M., Carretti E., Dei L., Baglioni P., Aqueous polyacrylic acid based gels: physicochemical properties and application the growth of Whitlockite. JCG. 79 (1986), 192-197.
- 5. Batin, G., Popa, C., Brânduşan, L., Vida-Simiti, I. Mechanical properties of Ti/HA functionally graded materials for hard tissue replacement. Powder Metallurgy Progress, 11(3-4) (2011).
- 6. Silva, V.V., Lameiras, F.S., Domingues, R.Z. Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications. Composites Science and Technology. 61 (2001), 301-310.
- 7. Bertoni, E., Bigi, A., Falini, G., Panzavolta, S., Roveri, N. Hydroxyapatite/polyacrylic acid nanocrystals. J. Mater. Chem. 9 (1999), 779–782.
- 8. Wosek, J. Fabrication of composite polyurethane/hydroxyapatite scaffolds using solvent-casting salt leaching technique. Advances in Materials Science, 15(1) (2015), 14-20.
- 9. Yilmaz, B., Doğan, S., Kasımoğulları, S.Ç. Hemocompatibility, cytotoxicity, and genotoxicity of poly(methylmethacrylate)/nanohydroxyapatite nanocomposites synthesized by melt blending method. International Journal of Polymeric Materials and Polymeric Biomaterials. 67(6) 2018 351-360.
- 10. Diken, M.E., Doğan, S., Turhan, Y., Doğan, M. Biological properties of PMMA/nHAp and PMMA/3-APT-nHAp nanocomposites. International Journal of Polymeric Materials and Polymeric Biomaterials. 67(13) (2018), 783–791.
- 11. Yoshida, A., Miyazaki, T., Ishida, E., Ashizuka, M. Preparation of bioactive chitosan-hydroxyapatite nanocomposites for bone repair through mechanochemical reaction. Materials Transactions. 45(4) (2004), 994-998.
- 12. Khan, A.S., Wong, F.S.L., McKay, I.J., Whiley, R.A., Rehman, I.U. Structural, mechanical, and biocompatibility analyses of a novel dental restorative nanocomposite. J. Appl. Polym. Sci. 130 (2013), 439-447.
- 13. El-Bahy, G.S., Abdelrazek, E.M., Allam, M.A., Hezma, A.M. Characterization of in situ prepared nano-hydroxyapatite/polyacrylic acid (HAp/PAAc) biocomposites. Journal of Applied Polymer Science. 122 (2011), 3270–3276.
- 14. Darder, M., Colilla, M., Ruiz-Hitzky, E. Biopolymer−Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chem. Mater. 15(20) (2003), 3774–3780.
- 15. Wang, S.F., Shen, L., Zhang, W-D., Tong, Y-J. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 6(6) (2005), 3067–3072.
- 16. Turhan, Y., Turan, P., Doğan, M., Alkan, M., Namli, H. and Demirbaş, Ö. Characterization and adsorption properties of chemically modified sepiolite. Industrial & Engineering Chemistry Research. 47(6) (2008), 1883-1895.
- 17. Doğan, M., Turhan, Y., Alkan, M., Namli, H., Turan, P. and Demirbaş, Ö. Functionalized sepiolite for heavy metal ions adsorption. Desalination. 230(1-3) (2008), 248-268.
- 18. Kızılduman, B.K., Alkan, M., Doğan, M., Turhan, Y. Al-pillared-montmorillonite (AlPMt)/poly(methyl methacrylate)(PMMA) nanocomposıtes: the effects of solvent types and synthesıs methods. Advances in Materials Science, 17(3) (2017), 5-23.
- 19. Turhan, Y., Doğan, M. and Alkan, M. Poly(vinyl chloride)/kaolinite nanocomposites: Characterization, Thermal and Optical Properties. Industrial & Engineering Chemistry Research. 49 (2010), 1503-1513.
- 20. Turhan, Y., Alp, Z.G., Alkan, M., Doğan, M., Preparation and characterization of poly(vinylalcohol)/modified bentonite nanocomposites. Microporous and Mesoporous Materials. 174 (2013), 144-153.
- 21. Belanger, M, Marois, Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. Journal of Biomedical Materials Research. 58(5) (2001), 467–477.
- 22. Arsad, S.M., Lee, P.M., Hunk, L.K. Synthesis and characterization of hydroxyapatite nanoparticles and β-TCP particles. International Conference on Biotechnology and Food Science. 7 (2011), 184-188.
- 23. Hojjati, B., Sui, R., Charpentier, P.A. Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer. 48 (2007), 5850-5858.
- 24. Dubinsky, S., Grader, G.S., Shter, G.E., Silverstein, M.S. Thermal degradation of poly(acrylic acid) containing copper nitrate. Polymer Degradation and Stability. 86 (2004), 171-178.
- 25. Turhan, Y., Doğan, M., Alkan, M. Characterization and some properties of poly(vinyl chloride)/sepiolite nanocomposites. Advances in Polymer Technology. 32(1) (2013) E65-E82.
- 26. Corcione, C.E., Frigione, M. Characterization of nanocomposites by thermal analysis. Materials. 5 (2012), 2960-2980.
- 27. Fuente, J.L., Wilhelm, M., Spiess, H.W., Madruga, E.L., Fernandez-Garcia, M. Cerrada, M.L. Thermal, morphological and rheological characterization of poly(acrylic acid-g-styrene) amphiphilic graft copolymers. Polymer. 46 (2005), 4544–4553.
- 28. McGaugh, M.C., Kottle, S. The thermal degradation of poly(acrylic acid). Journal of Polymer Science Part B: Polymer Letters. Journal of Polymer Science Part B: Polymer Letters. 5(9) (1967), 817–820.
- 29. Beyli, P.T., Doğan, M., Gündüz, Z., Alkan, M., Turhan, Y. Synthesis, characterization and their antimicrobial activities of boron oxide/poly(acrylic acid) nanocomposites: thermal and antimicrobial properties. Advances in Materials Science, 18(1) (2018), 28-36.
- 30. Çakir, R. The development of a new culture model to study the toxicity of polymers. MSc Thesis. Yildiz Technical University, Istanbul-Turkey, 2008.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-15a20883-1a69-4108-8539-256445c51e7a