Warianty tytułu
Języki publikacji
Abstrakty
The paper presents results of the investigation on the influence of deposition parameters, such as substrate temperature, total gas pressure and reactive gas composition on the structure, chemical composition and mechanical properties of aluminum oxynitride coatings obtained by pulsed laser deposition (PLD) method. Selection of process parameter ranges, which could be promising for aluminum oxynitride (ALON) coatings deposition, was the main objective of the work. Two series of experiments were carried out with varied pressure and temperature. It was found that from the chemical composition viewpoint, the most promising are atmospheres containing 20 % to 40 % oxygen. The nitrogen to oxygen ratios in the coatings can be controlled by increasing the total pressure or substrate temperature. However, increasing the pressure has a negative effect on the O + N:Al ratio, mechanical properties and quality of the coatings. The influence of temperature is much less drastic and more controllable. Increasing the deposition temperature is much more beneficial since it improves the mechanical properties and can compensate to some extent the negative effect of the total pressure. From the coating quality viewpoint, it is possible to establish an optimum temperature range for which the coatings are characterized by a compact structure and a limited number of droplets.
Czasopismo
Rocznik
Tom
Strony
254--264
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Institute of Materials Science and Engineering, West Pomeranian University of Technology, al. Piastów 19, 70-310 Szczecin, Poland, Joanna.Piwowarczyk@zut.edu.pl
autor
- Institute of Materials Science and Engineering, West Pomeranian University of Technology, al. Piastów 19, 70-310 Szczecin, Poland
autor
- Institute of Materials Science and Engineering, West Pomeranian University of Technology, al. Piastów 19, 70-310 Szczecin, Poland
Bibliografia
- [1] ZHENG J., FORSLUND B., J. Eur. Ceram. Soc., 15 (1995), 1087.
- [2] LI X., LUO J., ZHOU Y., J. Eur. Ceram. Soc., 35 (2015), 2027.
- [3] BOVARD B.G., Thin Solid Films, (1991), 206.
- [4] DEMIRYONT H., THOMPSON L.R., COLLINS G.J., J. Appl. Phys., 59 (1986), 3235.
- [5] LIU X.J., CHEN F., ZHANG F., ZHANG H.L., ZHANG Z., WANG J., WANG S.W., HUANG Z.R., Int. J. Refract. Met. H., 39 (2013), 38.
- [6] BYEON S.S., WANG K., JUNG Y.G., KOO B.H., Surf. Coat. Tech., 204 (2010), 3196.
- [7] HARTNETT T.M., BERNSTEIN S.D., MAGUIRE E.A., TUSTISON R.W., Infrared Phys. Techn., 39 (1998), 203.
- [8] GOLDMAN L.M., BALASUBRAMANIAN S., NAGENDRA N., SMITH M., ALON®Optical Ceramic Transparencies for Sensor and Armor Applications, in: Alon®Optical Ceramics, http://www.surmet.com/technology/alon-optical-ceramics/index.php, 2015.
- [9] SHAN Y., XU J., WANG G., Ceram. Int., 41 (2015), 3992.
- [10] POYAI A., BUNJONGPRU W., KLUNNGIEN N., PORNTHEERAPAT S., Mat. Sci. Semicon. Proc., 11 (2008), 319.
- [11] SU M., ZHOU Y., WANG K., J. Eur. Ceram. Soc., 35 (2015), 1173.
- [12] KIM Y.W., PARK H.C., LEE Y.B., J. Eur. Ceram. Soc., 21 (2001), 2383.
- [13] ZABINSKI J.S., HU J.J., BULTMAN J.E., PIERCE N.A., VOEVODIN A.A., Thin Solid Films, 516 (2008), 6215.
- [14] J ˛EDRZEJEWSKI R., BARANOWSKA J., BANCZEROWSKA ´ P., Inz. Mat. Mater. Eng., 5 (2013), 463.
- [15] J ˛EDRZEJEWSKI R., PIWOWARCZYK J., KOCHMANSKI ´ P., BARANOWSKA J., Inz. Mat. Mater. Eng., 6 (2014), 496.
- [16] MAGHSOUDIPOUR A., MOZTARZADEH F., SAREMI M., HEINRICH J.G., Ceram. Int., 30 (2004), 773.
- [17] PIWOWARCZYK J., J ˛EDRZEJEWSKI R., BARANOWSKA J., Inz. Mat. Mater. Eng., 1 (2016), 14.
- [18] LIU M., MAN B.Y., LIN X.C., LI X.Y., CHEN C.S., Appl. Surf. Sci., 253 (2007), 9291.
- [19] KHANDELWALA R., SINGHA A.P., KAPOORA A., GRIGORESCUB S. MIGLIETTAC P., STANKOVAD N.E., PERRONEC A., Opt. Laser Technol., 40 (2008), 247.
- [20] LOTIN A.A., NOVODVORSKY O.A., ZUEV D.A., KHRAMOVA O.D., PARSHINA L.S., LEBEDEV F.V., BARTHA J.W., WENZEL C., Opt. Mater., 35 (2013), 1564.
- [21] LIU M., WEI X.Q., ZHANG Z.G., SUN G., CHEN C.S., XUE C.S., ZHUANG H.Z., MAN B.Y., Appl. Surf. Sci., 252 (2006), 4321.
- [22] LIUA H., ZHANG Z., PANA K., MAA J., YANGA L., ZENGA X., Ceram. Int., 41 (2015), 11918.
- [23] BALAKRISHNAN G., BANDI V.R., RAJESWARI S.M., BALAMURUGAN N., BABU R.V., J.I. SONG J.I., Mater. Res. Bull., 48 (2013), 4901.
- [24] ZHANG W., WANG J., JI Z., LI H., LOU Y., YAO S., J. Rare. Earth., 28 (2010), 420.
- [25] HASKO D., BRUNCKO J., Vacuum, 84 (2010), 166.
- [26] ZHANG Z.G., ZHOU F., WEI X.Q., LIU M., SUN G., CHEN C.S., XUE C.S., ZHUANG H.Z., MAN B.Y., Physica E, 39 (2007), 253.
- [27] FARHA A.H., ER A.O., UFUKTEPE Y., MYNENI G., ELSAYED-ALI H.E., Surf. Coat. Tech., 206 (2011), 1168.
- [28] WANG C., CHENG B.L., WANG S.Y., LU H.B., Y.L. ZHOU Y.L., CHEN Z.H., YANG G.Z., Thin Solid Films, 485 (2005), 82.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-15648083-7d0e-4498-87d9-6a46c0f0be4f