Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 80, nr 2 | 64--85
Tytuł artykułu

The concept of biologically active microporous engineering materials and composite biological-engineering materials for regenerative medicine and dentistry

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The concept presented in this study proposes indirect solutions, both, rigid ones involving high strength and transmission of high mechanical loads, and ones which are elastic, thin and light as fog, when a very light dressing supplying living cells is applied to an extensive wound, e.g. on skin, in a way ensuring their fast fusion with the defected surface of body. They are proposed implant-scaffolds, i.e. rigid devices composed of a solid metal core and a surface or transition porous zone into which living cells may grow. The pores are so small that hair or even a very thin needle can be placed there. The interior of such openings, extending along the entire part of material, needs to be covered from the inside with a very thin coating which can be accepted by living cells so that they can develop in such conditions and penetrate such openings deep inside. Design/methodology/approach: The material solutions proposed in the study result from a synergy of methods of technical sciences, including materials engineering and chemical sciences, in consistency with the adopted author’s assumptions, but, in particular, depending on the specificity of clinical conditions and biological sciences, also tissue engineering, in the context of medical sciences, including tissue therapy, require a multiaspect state-of-the-art analysis and the resulting specific scientific problems which should be solved and their pioneering character. Taking into consideration the lack of references in the literature to the overall analysis of the issue, separate aspects are analysed further in this study concerning biologically active cellular structures and a substrate with an engineering composite material matrix used for scaffolds and newly developed implant-scaffolds. Findings: In consideration of the principal research intention of the presented research concept, pertaining to the development of hybrid and multilayer biological-engineering composite materials, including rigid and elastic ones, composed not only of biologically active cellular structures, the state-of-the-art of which is presented earlier, but also of a substrate with an engineering material matrix, with an optimally selected type, chemical composition and a nanometric structure, fulfilling a carrier function, and in fact a scaffold for biological structures required to have an appropriate array of mechanical properties and rigidity, allowing applications in therapeutic conditions, as well as physiochemical properties, permitting to fully control the behaviour of the whole biological- engineering composite material upon achieving the therapeutic aims defined by medical reasons, it is necessary to consider the material and technological aspects allowing to accomplish the abovementioned assumptions in the current state of technology. Practical implications: Despite obvious technological progress seen in the recent period in the fabrication of cell-based products and in cell-based therapies, it should be acknowledged that therapies based on implantable devices together with the participation of growing cells, and especially the mass technological processes required by such therapies, are still in a relatively incipient phase of technological development, leaving a lot of space for original and pioneering basic research. The basic research performed in the study will represent a solid basis for undertaking application works in the future, allowing to fabricate a new generation of concrete products unknown today, which will find their application in regenerative medicine and dentistry for treating various internal and external disorders associated with, e.g. burning, healing or severe wounds and injuries, removal of consequences of oncological or post-injury disorders. Originality/value: The primary scientific aim of the presented research concept is to verify a research thesis that it is possible and relevant to develop multilayer biological-engineering composite materials having clinical readiness, partially artificial ones, using Selective Laser Sintering (SLS), to fabricate microporous rigid titanium and titanium alloy skeletons or for polymer nanofiber electrospinning to produce microporous elastic mats, and partially biological ones consisting of living cells filling the appropriately prepared pores in the mentioned microporous materials. Cognitive aspects concern the recognition of phenomena and mechanisms associated with fabrication of the so understood biologically active microporous engineering material being, in essence, a biological-engineering composite material, and of surface phenomena and mechanisms taking place between individual layers of this unique material and their influence on manufacturing processes, both, in the engineering as well as biological part, and on the behaviour of particular layers and joint zones between such layers during material fabrication, as well as in conditions simulating therapy preparation and duration, and alternatively during the non-destructive separation of cellular structures from a substrate from a composite engineering material substrate on which cells are grown, but already after fulfilling the intended therapeutic function, if the material is not permanently left in the organism.
Wydawca

Rocznik
Strony
64--85
Opis fizyczny
Bibliogr. 189 poz.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] L.A. Dobrzański, The application of the concept of the implant-scaffolds and hybrid multilayer biologicalengineering composite materials, Invited lecture prepared for presentation on 16th International Materials Symposium, IMSP'2016, Denizli, Turkey, 12-14.10. 2016.
  • [2] L.A. Dobrzański, Metallic implants-scaffolds for dental and orthopedic application, Invited lecture on 9° COLAOB – Congresso Latino-Americano de Orgãos Artificiais e Biomateriais, Foz do Iguaçu, PR, Brazil, 24-27.08.2016.
  • [3] L.A. Dobrzański, Application of the additive manufacturing by selective laser sintering for constituting implant-scaffolds and hybrid multilayer biological and engineering composite materials, Keynote lecture on International Conference on Processing & Manufacturing of Advanced Materials THERMEC’2016, Processing, Fabrication, Properties, Applications, Graz, Austria, 29.05-3.06.2016.
  • [4] L.A. Dobrzański, Porous titanium scaffolds for cell grooving in dental application produced by additive manufacturing methods, Invited lecture on BIT’s 6th Annual World Gene Convention-2015, “More Advanced, More Healthy and More Safety”, WGC- 2015, Qingdao, China, 13-15.11.2015.
  • [5] L.A. Dobrzański, Advanced electron microscopy methods aiding the development of surface engineering of materials, Keynote opening lecture on World Congress on Microscopy: Instrumentation, Techniques and Applications in Life Sciences and Materials Sciences, WCM 2015, Kottayam, Kerala, India, 8- 13.10. 2015.
  • [6] L.A. Dobrzański, Application microscopy’s methods for investigations of the modern engineering materials with structural nanoelements, Invited lecture on World Congress on Microscopy: Instrumentation, Techniques and Applications in Life Sciences and Materials Sciences, WCM 2015, Kottayam, Kerala, India, 8-13.10. 2015.
  • [7] L.A. Dobrzański, Fabrication, structure and properties of the electrospinned nanofibers and nanocomposites for medical applications, Invited lecture on BIT’s 5th Annual World Congress of Nano Science and Technology, Nano S&T-2015, Xi’an, China, 24-26.09.2015.
  • [8] L.A. Dobrzański, Additive manufacturing of metallic scaffolds for orthopedic application, Invited lecture on XXIV International Materials Research Congress, IMRC 2015, Cancun, Mexico, 16-20.08.2015.
  • [9] L.A. Dobrzański, Biodegradable and antimicrobial polycaprolactone nanofibers with and without silver precipitates, Invited lecture on XXIV International Materials Research Congress, IMRC 2015, Cancun, Mexico, 16- 20.08.2015.
  • [10] L.A. Dobrzański, Development of surface engineering of materials with the explanation using modern methods of electron microscopy, Invited lecture on International Symposium of the Ukrainian Mechanical Engineers in Lviv, ISUMEL-12, Lviv, Ukraine, 28-29.05.2015.
  • [11] L.A. Dobrzański, Scale minimization as a symptom of development in the surface engineering research, Invited lecture on International Conference on Innovative Manufacturing Technology IMT 2014, Zakopane, Poland, 3- 5.12.2014.
  • [12] L.A. Dobrzański, The development of surface engineering through the use of advanced electron microscopy methods, Invited lecture on 15th International Materials Symposium, IMSP'2014, Denizli, Turkey, 15-17.10. 2014.
  • [13] L.A. Dobrzański, Fabrication, structure and mechanical properties of laser sintered materials for medical applications, Plenary lecture on XXV International Materials Research Congress, IMRC 2016, Cancun, Mexico, 14- 19.08.2016.
  • [14] L.A. Dobrzański, Scaffolds applicable as implants of a loss of palate fragments, Plenary lecture on International Conference on Processing & Manufacturing of Advanced Materials THERMEC’2016, Processing, Fabrication, Properties, Applications, Graz, Austria, 29.05- 3.06.2016.
  • [15] L.A. Dobrzański, Computer aided design and selective laser melting of porous biomimetic materials, Plenary lecture on The Advances in Materials and Processing Technologies Conference, AMPT 2015, Madrid, Spain, 13-17.12.2015.
  • [16] L.A. Dobrzański, Electrospinned nanofibers and nanocomposites for regenerative medicine, Plenary lecture on BIT’s 6th Annual World Gene Convention-2015, “More Advanced, More Healthy and More Safety”, WGC-2015, Qingdao, China, 13-15.11.2015.
  • [17] L.A. Dobrzański, Additive manufacturing of metallic scaffolds for orthopaedic application, Plenary lecture on XXIV International Materials Research Congress, IMRC 2015, Cancun, Mexico, 16-20.08.2015.
  • [18] L.A. Dobrzański, Structure and properties of the biomimetic composite consisting of the Ti6Al4V sintered scaffolds coated by polymeric surface layer, Plenary lecture on International Conference on Frontiers in Materials Processing, Applications, Research, & Technology, FiMPART’2015, Hyderabad, India, 12-15.06. 2015.
  • [19] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, T.G. Gaweł, Scaffolds applicable as implants of a loss palate fragments, Plenary lecture on International Conference on Processing & Manufacturing of Advanced Materials THERMEC’2016, Processing, Fabrication, Properties, Applications, Graz, Austria, 29.05-3.06.2016.
  • [20] L.A. Dobrzański, W. Wolany, Biomaterials manufacturing using SLS method, 20th Jubilee international seminar of Ph.D. students, SEMDOK 2015, Terchova, Slovakia, 2015, 109-112.
  • [21] B. Nieradka, I. Czaja, L.A. Dobrzański, Synthesis and morphology analysis of composite nanofibers, 20th Jubilee international seminar of Ph.D. students, SEMDOK 2015, Terchova, Slovakia, 2015, 85-88.
  • [22] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, D. Łukowiec, Research methodology laser sintered biomaterials, 20th Jubilee international seminar of Ph.D. students, SEMDOK 2015, Terchova, Slovakia, 2015, 57-66.
  • [23] A. Hudecki, L.A. Dobrzański, Biodegradable PVA and PEO polymeric nanofibers received in electrostatic field, Programme and Proceedings of the Twenty First International Scientific Conference „Achievements in Mechanical and Materials Engineering”, AMME'2013, Gliwice – Kraków, 2013, 129.
  • [24] L.A. Dobrzański (ed.), Powder Metallurgy, InTech, Rijeka, Croatia, 2017 (in press) (ISBN 978-953-51-4703- 9)
  • [25] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (eds.), Microporous metallic materials for medical application, Open Access Library, International OCSCO World Press, Gliwice, Poland, 2017 (in press).
  • [26] L.A. Dobrzański (ed.), Polymer nanofibers produced by electrospinning applied in regenerative medicine, Open Access Library V/3 (2015) 1-168.
  • [27] J. Nowacki, L.A. Dobrzański, F. Gustavo, Intramedullary implants for osteosynthesis of long bones, Open Access Library 11/17 (2012) 1-150 (in Polish).
  • [28] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, M. Szindler, T.G. Gaweł, Porous selective laser melted Ti and Ti6Al4V materials for medical applications, in: L.A. Dobrzański (ed.), Powder Metallurgy, InTech, Rijeka, Croatia, 2017, (in press) (ISBN 978-953-51-4703-9).
  • [29] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, E. Hajduczek, G. Matula, Fabrication technologies of the sintered materials including materials for medical and dental application, in: L.A. Dobrzański (ed.), Powder Metallurgy, InTech, Rijeka, Croatia, 2017 (in press) (ISBN 978-953-51-4703- 9).
  • [30] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, A. Achtelik-Franczak, Selective laser sintering and melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045, doi: 10.1515/ amm-2015-0346.
  • [31] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T. Gaweł, L.B. Dobrzański, A. Achtelik-Franczak, Fabrication of scaffolds from Ti6Al4V powders using the computer aided laser method, Archives of Metallurgy and Materials 60/2 (2015) 1065-1070, doi: 10.1515/ amm-2015-0260.
  • [32] Ł. Reimann, J. Żmudzki, L.A. Dobrzański, Strength analysis of a three-unit dental bridge framework with the Finite Element Method, Acta of Bioengineering and Biomechanics 17/1 (2015) 51-59, doi: 10.5277/ ABB-00091-2014-02.
  • [33] J. Żmudzki, G. Chladek, J. Kasperski, L.A. Dobrzański, One Versus Two Implant-Retained Dentures: Comparing Biomechanics Under Oblique Mastication Forces, Journal of Biomechanical Engineering 135/5 (2013) 054503-1-054503-4, doi: 10.1115/1.4023985.
  • [34] L.A. Dobrzański, Applications of newly developed nanostructural and microporous materials in biomedical, tissue and mechanical engineering, Archives of Materials Science and Engineering 76/2 (2015) 53-114.
  • [35] L.A. Dobrzański, A. Hudecki, G. Chladek, W. Król, A. Mertas, Biodegradable and antimicrobial polycaprolactone nanofibers with and without silver precipitates, Archives of Materials Science and Engineering 76/1 (2015) 5-26.
  • [36] M. Kremzer, L.A. Dobrzański, M. Dziekońska, M. Macek, Atomic layer deposition of TiO2 onto porous biomaterials, Archives of Materials Science and Engineering 75/2 (2015) 63-69.
  • [37] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Szindler, A. Achtelik-Franczak, W. Pakieła, Atomic layer deposition of TiO2 onto porous biomaterials, Archives of Materials Science and Engineering 75/1 (2015) 5-11.
  • [38] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, Comparative analysis of mechanical properties of scaffolds sintered from Ti and Ti6Al4V powders, Archives of Materials Science and Engineering 73/2 (2015) 69-81.
  • [39] L.A. Dobrzański, A. Hudecki, G. Chladek, W. Król, A. Mertas, Surface properties and antimicrobial activity of composite nanofibers of polycaprolactone with silver precipitations, Archives of Materials Science and Engineering 70/2 (2014) 53-60.
  • [40] L.A. Dobrzański, A. Hudecki, Structure, geometrical characteristics and properties of biodegradable microand polycaprolactone nanofibers, Archives of Materials Science and Engineering 70/1 (2014) 5-13.
  • [41] L.A. Dobrzański: Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine, Archives of Materials Science and Engineering 69/2 (2014) 53-80.
  • [42] L.A. Dobrzański, B. Nieradka, M. Macek, W. Matysiak: Influence of the electrospinning parameters on the morphology of composite nanofibers, Archives of Materials Science and Engineering 69/1 (2014) 32-37.
  • [43] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł: Ti6Al4V porous elements coated by polymeric surface layer for biomedical applications, Journal of Achievements in Materials and Manufacturing Engineering 71/2 (2015) 53-59.
  • [44] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł: Computer-aided design and selective laser melting of porous biomimetic materials, Advances in Materials and Processing Technologies 3/1 (2017) 70-82 (in press) doi: 10.1080/2374068X.2016.1247339.
  • [45] L.A. Dobrzański, Korszerű mérnöki anyagok kutatásának nanotechnológiai aspektusai, Miskolci Egyetem, Multidiszciplináris tudományok 6/1 (2016) 21-44.
  • [46] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, A. Achtelik-Franczak, L.B. Dobrzański, M. Kremzer, A way of producing composite materials with microporous skeletal structure of the reinforcement, Patent application P 417552, 13.06. 2016 (in Polish).
  • [47] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, L.B. Dobrzański, A. Achtelik-Franczak, Biological and engineering composites for regenerative medicine, Patent application P 414723, 9.11.2015 (in Polish).
  • [48] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik-Franczak, Bone implant scaffold, Patent application P 414424, 19.10.2015 (in Polish).
  • [49] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. AchtelikFranczak, Implant scaffold and a prosthesis of anatomical elements of a dental system and craniofacial bone, Patent application P 414423 z dn. 19.10.2015 (in Polish).
  • [50] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik, Composite produced using the computer-aided laser methods, intended for the facial skeleton implants and method for producing it, Patent application P 411689, 23.03.2015, Biuletyn Urzędu Patentowego 44/20 (2016) 6 (in Polish).
  • [51] L.A. Dobrzański, A. Hudecki, A way of producing composite material with bioactive and bactericidal properties, Patent application P 410452, 08.12.2014, Biuletyn Urzędu Patentowego 44/13 (2016) 25 (in Polish).
  • [52] L.A. Dobrzański, A. Hudecki, A way of producing composite material with bioactive and bactericidal properties, Patent application P 410427, 08.12.2014, Biuletyn Urzędu Patentowego 44/13 (2016) 25 (in Polish).
  • [53] A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, W. Wolany, L.A. Dobrzański, Dental implants and bridges with scaffold structure – Gold Award and The First Institute Inventors and Researches in I. R. Iran (FIRI) Award for the Best Invention, 9th Korea International Women's Invention Exposition, KIWIE 2016, Seoul, Korea, 16-19.06.2016.
  • [54] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, L.B. Dobrzański, A. Achtelik-Franczak, T.G. Gaweł, Implant-scaffold or Prosthesis Anatomical Structures of the Stomatognathic System and the Craniofacial – Gold Medal, International Exhibition of Technical Innovations, Patents and Inventions, INVENT ARENA 2016, Třinec, Czech Republic, 16-18.06.2016.
  • [55] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, L.B. Dobrzański, A. Achtelik-Franczak, T.G. Gaweł, Implant-scaffold or Prosthesis Anatomical Structures of the Stomatognathic System and the Craniofacial – Gold Medal and International Intellectual Property Network Forum (IIPNF) Leading Innovation Award, International Intellectual Property, Invention, Innovation and Technology Exposition, IPITEX 2016, Bangkok, Thailand, 2-6.02.2016.
  • [56] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. AchtelikFranczak, The novel composite consisting of a metallic scaffold, manufactured using a computer aided laser method, coated with thin polymeric surface layer for medical applications – Semi Grand Prize, Global Inventions and Innovations Exhibitions Innova Cities Latino-America, ICLA 2015, Foz do Iguaçu, Brazil, 10- 12.12.2015.
  • [57] L.A. Dobrzański, A. Hudecki, Composite material with bioactive and bacteriocidal properties and the way of its manufacturing – Silver Medal, Global Inventions and Innovations Exhibitions Innova Cities Latino-America, ICLA 2015, Foz do Iguaçu, Brazil, 10-12.12.2015.
  • [58] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. AchtelikFranczak, The novel composite consisting of a metallic scaffold, manufactured using a computer aided laser method, coated with thin polymeric surface layer for medical applications – Gold Medal, 9th International Warsaw Invention Show IWIS 2015, Warsaw, Poland, 12-14.10.2015.
  • [59] L.A. Dobrzański, A. Hudecki, Composite material with bioactive and bacteriocidal properties and the way of its manufacturing – Silver Medal, 9th International Warsaw Invention Show IWIS 2015, Warsaw, Poland, 12- 14.10.2015.
  • [60] L.A. Dobrzański, A. Hudecki, Composite material with bioactive and bacteriocidal and the way of its manufacturing – Bronze Medal, 26th International Invention, Innovation & Technology Exhibition "ITEX 2015", Kuala Lumpur, Malaysia, 21-23.05. 2015.
  • [61] L.R. Kaiser, The future of multihospital systems, Topics in Health Care Financing 18/4 (1992) 32-45.
  • [62] C.R. Cogle, S.M. Guthrie, R.C. Sanders, W.L. Allen, E.W. Scott, B.E. Petersen, An Overview of Stem Cell Research and Regulatory Issues, Mayo Clinic Proceedings 78/8 (2003) 993-1003, doi: 10.4065/78.8.993.
  • [63] M.R. Placzek, I.-M. Chung, H.M. Macedo, S. Ismail, T. Mortera Blanco, M. Lim, J.M. Cha, I. Fauzi, Y. Kang, D.C.L Yeo, C.Y.J. Ma, J.M. Polak, N. Panoskaltsis, A. Mantalaris, Stem cell bioprocessing: fundamentals and principles, Journal of The Royal Society Interface 6/32 (2009) 209-232, doi: 10.1098/ rsif.2008.0442.
  • [64] A. Atala, R. Lanza, J.A. Thomson, R. Nerem (eds.), Principles of regenerative medicine, Second Edition, Academic Press, San Diego, 2011.
  • [65] C.M. Metallo, S.M. Azarin, L. Ji, J.J. De Pablo, S.P. Palecek, Engineering tissue from human embryonic stem cells, Journal of Cellular and Molecular Medicine 12/3 (2008) 709-729, doi: 10.1111/j.1582-4934.2008. 00228.x.
  • [66] Regenerative Medicine 2006, Report, US National Institutes of Health, 2006, http://stemcells.nih.gov/ staticresources/info/scireport/PDFs/Regenerative_Medici ne_2006.pdf, Access 31.05.2016.
  • [67] R. Langer, J.P. Vacanti, Tissue engineering, Science 260/5110 (1993) 920-926.
  • [68] J. Viola, B. Lal, O. Grad, The Emergence of Tissue Engineering as a Research Field, The National Science Foundation, Arlington, USA, 2003.
  • [69] B.D. MacArthur, R.O.C. Oreffo, Bridging the gap, Nature 433/7021 (2005) 19, doi: 10.1038/433019a.
  • [70] Y.C. Fung, A Proposal to the National Science Foundation for An Engineering Research Center at UCSD. Center for the Engineering of Living Tissues, UCSD #865023, 2001.
  • [71] R.P. Lanza, R. Langer, J. Vacanti, eds., Principles of Tissue Engineering, Academic Press, San Diego, 2000.
  • [72] A. Atala, R.P. Lanza (eds.), Methods of Tissue Engineering, Academic Press, San Diego, 2002.
  • [73] F. Yang, W.L. Neeley, M.J. Moore, J.M. Karp, A. Shukla, R. Langer, Tissue Engineering: The Therapeutic Strategy of the Twenty-First Century, in: C.T. Laurencin, L.S. Nair (eds.), Nanotechnology and Tissue Engineering: The Scaffold, CRC Press Taylor & Francis Group, Boca Raton, FL, 2008, 3-32.
  • [74] M. Tavassoli, W.H. Crosby, Transplantation of marrow to extramedullary sites, Science 161/3836 (1968) 54-56.
  • [75] A.I. Caplan, Mesenchymal stem cells, Journal of Orthopaedic Research 9/5 (1991) 641-650, doi: 10.1002/jor. 1100090504.
  • [76] M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells, Science 284/5411 (1999) 143-147.
  • [77] E.J. Culme-Seymour, L.N. Davie, D.A. Brindley, S. Edwards-Parton, C. Mason, A decade of cell therapy clinical trials (2000–2010), Regenerative Medicine 7/4 (2012) 455-462, doi: 10.2217/rme.12.45.
  • [78] C. Mason, M.J. McCall, E.J. Culme-Seymour, S. Suthasan, S. Edwards-Parton, G.A. Bonfiglio, B.C. Reeve, The global cell therapy industry continues to rise during the second and third quarters of 2012, Cell Stem Cell 11/6 (2012) 735-739, doi: 10.1016/j.stem.2012. 11.013.
  • [79] A. Arsiwala, P. Desai, V. Patravale, Recent advances in micro/nanoscale biomedical implants, Journal of Controlled Release 189 (2014) 25-45, doi: 10.1016/j.jconrel. 2014.06.021.
  • [80] A. Trounson, R.G. Thakar, G. Lomax, D. Gibbons, Clinical trials for stem cell therapies, BMC Medicine 9/52 (2011) 1-7, doi:10.1186/1741-7015-9-52.
  • [81] J.A. Hubbell, Biomaterials in tissue engineering, Biotechnology (NY) 13/6 (1995) 565-576.
  • [82] C.J. Bettinger, J.T. Borenstein, R. Langer, Microfabrication Techniques in Scaffold Development, in: C.T. Laurencin, L.S. Nair, eds., Nanotechnology and Tissue Engineering: The Scaffold, CRC Press Taylor & Francis Group, Boca Raton, FL, 2008.
  • [83] N.A. Peppas, R. Langer, New challenges in biomaterials, Science 263/5154 (1994) 1715-1720.
  • [84] J.A. Hubbell, Bioactive biomaterials, Current Opinion in Biotechnology 10/2 (1999) 123-129.
  • [85] K.E. Healy, A. Rezania, R.A. Stile, Designing biomaterials to direct biological responses, Annals of the New York Academy of Sciences 875 (1999) 24-35.
  • [86] J. Elisseeff, A. Ferran, S. Hwang, S. Varghese, Z. Zhang, The role of biomaterials in stem cell differentiation: Applications in the musculoskeletal system, Stem Cells and Development 15/3 (2006) 295-303, doi: 10.1089/scd. 2006.15.295
  • [87] M.P. Lütolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nature Biotechnology 23/1 (2005) 47-55, doi: 10.1038/nbt1055.
  • [88] F. Yang, C.G. Williams, D.A. Wang, H. Lee, P.N. Manson, J. Elisseeff, The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells, Biomaterials 26/30 (2005) 5991-5998, doi: 10.1016/j. biomaterials.2005.03.018.
  • [89] N.S. Hwang, M.S. Kim, S. Sampattavanich, J.H. Baek, Z. Zhang, J. Elisseeff, Effects of threedimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells, Stem Cells 24/2 (2006) 284-291, doi: 10.1634/stemcells.2005-0024.
  • [90] R. Langer, D.A. Tirrell, Designing materials for bio-logy and medicine, Nature 428/6982 (2004) 487-492, doi: 10.1038/nature02388.
  • [91] M.C. Kruyt, J.D. De Bruijn, C.E. Wilson, F.C. Oner, C.A. van Blitterswijk, A.J. Verbout, W.J. Dhert, Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats, Tissue Engineering 9/2 (2003) 327-336, doi: 10.1089/107632703764664792.
  • [92] C.E. Wilson, W.J. Dhert, C.A. van Blitterswijk, A.J. Verbout, J.D. De Bruijn, Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue assay and the effect on in vivo bone formation, Journal of Materials Science. Materials in Medicine 13/12 (2002) 1265-1269, doi:10.1023/A: 1021139415528.
  • [93] G. Helmlinger, F. Yuan, M. Dellian, R.K. Jain, Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation, Nature Medicine 3/2 (1997) 177-182.
  • [94] J. Folkman Tumor angiogenesis: Therapeutic implications, New England Journal of Medicine 285/21 (1971) 1182-1186, doi: 10.1056/NEJM197111182852108.
  • [95] D.J. Mooney, G. Organ, J.P. Vacanti, R. Langer, Design and fabrication of biodegradable polymer devices to engineer tubular tissues, Cell Transplant 3/2 (1994) 203- 210.
  • [96] G. Li, A.S. Virdi, D.E. Ashhurst, A.H. Simpson, J.T. Triffitt, Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: Localization of the cells that express the mRNAs and the distribution of types I and II collagens, Cell Biology International 24/1 (2000) 25-33, doi: 10.1006/cbir.1999. 0449.
  • [97] J.E. Sanders, S.G. Malcolm, S.D. Bale, Y.N. Wang, S. Lamont, Prevascularization of a biomaterial using a chorioallontoic membrane, Microvascular Research 64/1 (2002) 174-178, doi: 10.1006/mvre.2002.2410.
  • [98] G.F. Muschler, C. Nakamoto, L.G. Griffith, Engineering principles of clinical cell-based tissue engineering, Journal of Bone and Joint Surgery 86-A/7 (2004) 1541- 1558, .
  • [99] M. Noga, A. Pawlak, B. Dybala, B. Dabrowski, W. Swieszkowski, M. Lewandowska-Szumiel, Biological Evaluation of Porous Titanium Scaffolds (Ti-6Al-7Nb) with HAp/Ca-P surface seeded with Human Adipose Derived Stem Cells, E-MRS Fall Meeting, Warsaw, 2013.
  • [100] H. Bramfeldt, G. Sabra, V. Centis, P. Vermette, Scaffold Vascularization: A Challenge for Three-Dimensional Tissue Engineering, Current Medicinal Chemistry17/33 (2010) 3944-3967.
  • [101] J. Rouwkema, N.C. Rivron, C.A. van Blitterswijk, Vascularization in tissue engineering, Trends Biotechnology 26/8 (2008) 434-441, doi: 10.1016/j.tibtech.2008. 04.009.
  • [102] S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends in Biotechnology 30/10 (2012) 546-554, doi: 10.1016/j. tibtech.2012.07.005.
  • [103] R.K. Jain, P. Au, J. Tam, D.G. Duda, D. Fukumura, Engineering vascularized tissue, Nature Biotechnology 23 (2005) 821-823, doi: 10.1038/nbt0705-821.
  • [104] P. Lichte, H.C. Pape, T. Pufe, P. Kobbe, H. Fischer, Scaffolds for bone healing: Concepts, materials and evidence, Injury 42/6 (2011) 569-573, doi: 10.1016/j. injury.2011.03.033.
  • [105] W. Xue, A. Bandyopadhyay, S. Bose, Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering Journal of Biomedical Materials Research Part B: Applied Biomaterials 91/2 (2009) 831-838, doi: 10.1002/jbm.b. 31464.
  • [106] S.S. Banerjee, S. Tarafder, N.M. Davies, A. Bandyopadhyay, S. Bose, Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of β-TCP ceramics, Acta Biomaterialia 6/10 (2010) 4167-4174, doi: 10.1016/j.actbio. 2010.05.012.
  • [107] M.W. Laschke, A. Strohe, M.D. Menger, M. Alini, D. Eglin, In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering, Acta Biomaterialia 6/6 (2010) 2020-2027, doi: 10.1016/j. actbio.2009.12.004.
  • [108] H. Naito, Y. Dohi, W.-H. Zimmermann, T. Tojo, S. Takasawa, T. Eschenhagen, S. Taniguchi, The Effect of Mesenchymal Stem Cell Osteoblastic Differentiation on the Mechanical Properties of Engineered Bone-Like Tissue, Tissue Engineering Part A 17/17-18 (2011) 2321-2329, doi: 10.1089/ten.tea.2011.0099.
  • [109] A. Papadimitropoulos, M. Mastrogiacomo, F. Peyrin, E. Molinari, V.S. Komlev, F. Rustichelli, R. Cancedda, Kinetics of in vivo bone deposition by bone marrow stromal within a resorbable porous calcium phosphate scaffold: An X-ray computed microtomography study, Biotechnology and Bioengineering 98/1 (2007) 271- 281, doi: 10.1089/ten.tea.2011.0099.
  • [110] E. Verron, I. Khairoun, J. Guicheux, J.-M. Bouler, Calcium phosphate biomaterials as bone drug delivery systems: a review, Drug Discovery Today 15/13-14 (2010) 547-552, doi: 10.1016/j.drudis.2010.05.003.
  • [111] S. Bose, S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review, Acta Biomaterialia 8/4 (2012) 1401-1421, doi: 10.1016/j.actbio.2011.11.017.
  • [112] M. Keeney, J.J.J.P. van den Beucken, P.M. van der Kraan, J.A. Jansen, A. Pandit, The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165), Biomaterials 31/10 (2010) 2893-2902, doi: 10.1016/j.biomaterials.2009. 12.041.
  • [113] N. Kimelman-Bleich, G. Pelled, Y. Zilberman, I. Kallai, O. Mizrahi, W. Tawackoli, Z. Gazit, D. Gazit, Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair, Molecular Therapy 19/1 (2010) 53-59, doi: 10.1038/mt.2010.190.
  • [114] V.K. Balla, S. Bodhak, S. Bose, A. Bandyopadhyay, Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties, Acta Biomaterialia 6/8 (2010) 3349-3359, doi: 10.1016/ j.actbio.2010.01.046.
  • [115] K. Das, V.K. Balla, A. Bandyopadhyay, S. Bose, Surface modification of laser-processed porous titanium for load-bearing implants, Scripta Materialia 59/8 (2008) 822-825, doi: 10.1016/j.scriptamat.2008.06.018.
  • [116] F. Witte, H. Ulrich, C. Palm, E. Willbold, Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodelling, Journal of Biomedical Materials Research Part A 81/3 (2007) 757-765.
  • [117] R. Nowosielski, A. Gawlas-Mucha, A. Borowski, A. Guwer, Fabrication and properties of magnesium based alloys Mg-Ca, Journal of Achievements in Materials and Manufacturing Engineering 61/2 (2013) 367-374.
  • [118] Y. Yun, Z. Dong, N. Lee, Y. Liu, D. Xue, X. Guo, J. Kuhlmann, A. Doepke, H.B. Halsall, W. Heineman, S. Sundaramurthy, M.J. Schulz, Z. Yin, V. Shanov, D. Hurd, P. Nagy, W. Li, C. Fox, Revolutionizing biodegradable metals, Materials Today 12/10 (2009) 22-32.
  • [119] J. Street, D. Winter, J.H. Wang, A. Wakai, A. McGuinness, H.P. Redmond, Is human fracture hematoma inherently angiogenic?, Clinical Orthopaedics and Related Research 378 (2000) 224-237.
  • [120] J.M. Karp, F. Sarraf, M.S. Shoichet, J.E. Davies, Fibrinfilled scaffolds for bone-tissue engineering: An in vivo study, Journal of Biomedical Materials Research Part A 71/1 (2004) 162-171, doi: 10.1002/jbm.a.30147.
  • [121] J. Velema, D. Kaplan, Biopolymer-based biomaterials as scaffolds for tissue engineering, Advances in Biochemical Engineering, Biotechnology 102 (2006) 187-238, doi: 10.1007/10_013.
  • [122] K.F. Leong, C.M. Cheah, C.K. Chua, Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs, Biomaterials 24/13 (2003) 2363-2378.
  • [123] L.S. Nair, C.T. Laurencin, Polymers as biomaterials for tissue engineering and controlled drug delivery, Advances in Biochemical Engineering, Biotechnology 102 (2006) 47-90, doi: 10.1007/b137240.
  • [124] E.H. Lee, J.H.P. Hui, The potential of stem cells in orthopaedic surgery, Journal of Bone & Joint Surgery, British Volume 88-B/7 (2006) 841-851, doi: 10.1302/ 0301-620X.88B7.17305.
  • [125] S.J. Morrison, I.L. Weissman, The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype, Immunity 1/8 (1994) 661-673.
  • [126] M. Raff, Adult stem cell plasticity: fact or artifact?, Annual Review of Cell and Developmental Biology 19 (2003) 1-22. doi: 10.1146/annurev.cellbio.19.111301. 143037.
  • [127] S. Bajada, I. Mazakova, J.B. Richardson, N. Ashammakhi, Updates on stem cells and their applications in regenerative medicine, Journal of Tissue Engineering and Regenerative Medicine 2/4 (2008) 169-183, doi: 10.1002/term.83.
  • [128] K.S. Johal, V.C. Lees, A.J. Reid, Adipose-derived stem cells: selecting for translational success, Regenerative Medicine 10/1 (2015) 79-96, doi: 10.2217/rme.14.72.
  • [129] S. Wang, X. Qu, R.C. Zhao, Clinical applications of mesenchymal stem cells, Journal of Hematology & Oncology 5 (2012) 19, doi: 10.1186/1756-8722-5-19.
  • [130] M.J. Branch, K. Hashmani, P. Dhillon, D.R.E. Jones, H.S. Dua, A. Hopkinson, Mesenchymal Stem Cells in the Human Corneal Limbal Stroma, Investigative Ophthalmology & Visual Science 53/9 (2012) 5109- 5116, doi: 10.1167/iovs.11-8673.
  • [131] Americord, What is Cord Tissue?, 2015, http://ameri cordblood.com/cord-tissue-banking, Access 4.06.2016.
  • [132] S. Aggarwal, M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses, Blood 105/4 (2005) 1815-1822, doi: 10.1182/blood-2004-04-1559.
  • [133] K. Le Blanc, L. Tammik, B. Sundberg, S.E. Haynesworth, O. Ringden, Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex, Scandinavian Journal of Immunology 57/1 (2003) 11-20.
  • [134] B. Maitra, E. Szekely, K. Gjini, M.J. Laughlin, J. Dennis, S.E. Haynesworth, O.N. Koc, Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation, Bone Marrow Transplant 33/6 (2004) 597-604, doi: 10.1038/sj.bmt. 1704400.
  • [135] M.J. Shamblott, J. Axelman, S. Wang, E.M. Bugg, J.W. Littlefield, P.J. Donovan, P.D. Blumenthal, G.R. Huggins, J.D. Gearhart, Derivation of pluripotent stem cells from cultured human primordial germ cells, Proceedings of the National Academy of Sciences USA 95/23 (1998) 13726-13731.
  • [136] J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Embryonic stem cell lines derived from human blastocysts, Science 282/5391 (1998) 1145-1147, doi: 10.1126/ science.282.5391.1145.
  • [137] C.L. Cetrulo Jr., Cord-blood mesenchymal stem cells and tissue engineering, Stem Cell Reviews and Reports 2/2 (2006) 163-168, doi: 10.1007/s12015-006-0023-x.
  • [138] D. Baksh, R. Yao, R.S. Tuan, Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow, Stem Cells 25/6 (2007) 1384- 1392, doi: 10.1634/stemcells.2006-0709.
  • [139] R. Izadpanah, C. Trygg, B. Patel, C. Kriedt, J. Du-four, J.M. Gimble, B.A. Bunnell, Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue, Journal of Cellular Biochemistry 99/5 (2006) 1285-1297.
  • [140] A.I. Caplan, S.P. Bruder, Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century, Trends in Molecular Medicine 7/6 (2001) 259- 264, doi: 10.1016/S1471-4914(01)02016-0
  • [141] D. Baksh, J.E. Davies, P.W. Zandstra, Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion, Experimental Hematology 31/8 (2003) 723-732, doi: 10.1016/S0301-472X(03)00106-1.
  • [142] P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick, Multilineage cells from human adipose tissue: Implications for cell-based therapies, Tissue Engineering 7/2 (2001) 211-228, doi: 10.1089/107632701300062859.
  • [143] G. Moll, A. Hult, L. von Bahr, J.J. Alm, N. Heldring, O.A. Hamad, L. Stenbeck-Funke, S. Larsson, Y. Teramura, H. Roelofs, B. Nilsson, W.E. Fibbe, M.L. Olsson, K. Le Blanc, Do ABO Blood Group Antigens Hamper the Therapeutic Efficacy of Mesenchymal Stromal Cells?, PLoS ONE 9 (2014) e85040, doi: 10.1371/ journal.pone.0085040.
  • [144] E.A. Rayment, D.J. Williams, Concise review: mind the gap: challenges in characterizing and quantifying celland tissue-based therapies for clinical translation, Stem Cells 28/5 (2010) 996-1004, doi: 10.1002/stem.416.
  • [145] R.J. Thomas, A. Chandra, Y. Liu, P.C. Hourd, P.P. Conway, D.J. Williams, Manufacture of a human mesenchymal stem cell population using an automated cell culture platform, Cytotechnology 55/1 (2007) 31-39, doi: 10.1007/s10616-007-9091-2.
  • [146] R.J. Thomas, A.D. Hope, P. Hourd, M. Baradez, E.A. Miljan, J.D. Sinden, D.J. Williams, Automated, serumfree production of CTX0E03: a therapeutic clinical grade human neural stem cell line, Biotechnology Letters 31/8 (2009) 1167-1172, doi: 10.1007/s10529-009-9989-1.
  • [147] Y. Liu, P. Hourd, A. Chandra, D.J. Williams, Human cell culture process capability: a comparison of manual and automated production, Journal of Tissue Engineering and Regenerative Medicine 4/1 (2010) 45-54, doi: 10.1002/term.217.
  • [148] R.J. Thomas, D. Anderson, A. Chandra, N.M. Smith, L.E. Young, D. Williams, C. Denning, Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnology and Bioengineering 102/6 (2009) 1636-1644, doi: 10.1002/bit. 22187.
  • [149] L.B. Dobrzański, Structure and properties of the engineering materials for the prosthetic restorations of the stomatognathic system produced by additive or loss methods, PhD thesis in progress, AGH University of Science and Technology, Kraków, 2017 (in Polish).
  • [150] A. Mazzoli, Selective laser sintering in biomedical engineering, Medical & Biological Engineering & Computing 51/3 (2013) 245-256, doi: 10.1007/s11517-012-1001-x.
  • [151] F.E. Wiria, K.F. Leong, C.K. Chua, Y. Liu, Polyepsilon-caprolactone-hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering, Acta Biomaterialia 3/1 (2007) 1-12, doi: 10.1016/j. actbio.2006.07.008.
  • [152] J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials 26/23 (2005) 4817-4827, doi: 10.1016/j. biomaterials.2004.11.057.
  • [153] C.K. Chua, K.F. Leong, K.H. Tan, F.E. Wiria, C.M. Cheah, Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol=hydroxyapatite biocomposite for craniofacial and joint defects, Journal of Materials Science. Materials in Medicine 15/10 (2004) 1113-1121, doi: 10.1023/b:jmsm.0000046393. 81449.a5.
  • [154] K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, W.S. Gui, W.S. Tan, F.E. Wiria, Selective laser sintering of biocompatible polymers for applications in tissue engineering, Bio-Medical Materials and Engineering 15/1-2 (2005) 113-124.
  • [155] C. Shuai, C. Gao, Y. Nie, H. Hu, Y. Zhou, S. Peng, Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system, Nanotechnology 22/28 (2011) 285703, doi: 10.1088/0957-4484/22/28/285703.
  • [156] T.J. Sill, H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering, Biomaterials 29/13 (2008) 1989-2006, doi: 10.1016/j. biomaterials.2008.01.011.
  • [157] R. Murugan, S. Ramakrishna, Nano-featured scaffolds for tissue engineering: A review of spinning methodologies, Tissue Engineering 12/3 (2006) 435-447, doi: 10.1089/ten.2006.12.435.
  • [158] J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Electrospinning of collagen nanofibers, Biomacromolecules 3/2 (2002) 232-238, doi: 10.1021/bm 015533u.
  • [159] F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano=micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials 26/15 (2005) 2603-2610, doi: 10.1016/j.biomaterials.2004.06.051.
  • [160] R. Murugan, S. Ramakrishna, Design strategies of tissue engineering scaffolds with controlled fiber orientation, Tissue Engineering 13/8 (2007) 1845-1866, doi: 10.1089/ten.2006.0078.
  • [161] L.A. Dobrzański, M. Hetmańczyk, E. Łągiewka, Current state and development perspectives of Materials Science and Engineering in Poland, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 782-789.
  • [162] L.A. Dobrzański, A.J. Nowak, W. Błażejewski, R. Rybczyński, The concept of preparation of oesophageal prosthesis based on long-fibre composite material, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 18-24,
  • [163] L.A. Dobrzański, M. Pawlyta, A. Hudecki, Conceptual study on a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 550-565.
  • [164] L.A. Dobrzański et al., Development of a new composite material with a gradient of the polymer matrix reinforced with aramid fibers and titanium powder particles, for the production of esophageal prosthesis intrasystemic, ESOPHAGUS, Project N N507 422136, Gliwice, 2009-2011.
  • [165] L.A. Dobrzański et al., Foresight of surface properties formation leading technologies of engineering materials and biomaterials, FORSURF, Project UDA-POIG.01. 01.01-00.23/08-00, Gliwice, 2009-2012.
  • [166] L.A. Dobrzański et al., Establishing a methodology of computer-aided material, technological and construction design of fixed dental multi-component prostheses for predicting their functional properties, CADENT, Project N N507 438539, Gliwice, 2010-2013.
  • [167] L.A. Dobrzański et al., Determining the importance of the effect of the one-dimensional nanostructural materials on the structure and properties of newly developed functional nanocomposite and nanoporous materials, NANOCOPOR, Project UMO-2012/07/B/ ST8/04070, Gliwice, 2013-2016,
  • [168] Dobrzański L.A. et al., Investigations of structure and properties of newly created porous biomimetic materials fabricated by selective laser sintering, BIOLASIN, Project UMO-2013/08/M/ST8/00818, Gliwice, 2013- 2016.
  • [169] L.A. Dobrzański, Descriptive metal science, Silesian University of Technology Publishing, Gliwice, 2013, 1-814 (in Polish).
  • [170] L.A. Dobrzański, Report on the main areas of the materials science and surface engineering own research, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 514-549.
  • [171] L.A. Dobrzański, A. Achtelik-Franczak, M. Król, Computer aided design in Selective Laser Sintering (SLS) – application in medicine, Journal of Achievements in Materials and Manufacturing Engineering 60/2 (2013) 66-75.
  • [172] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Formation of structure and properties of engineering materials, Silesian University of Technology Publishing, Gliwice, 2013, 1-492 (in Polish).
  • [173] A.D. Dobrzańska-Danikiewicz, The Book of Critical Technologies of Surface and Properties Formation of Engineering Materials, Open Access Library 8/26 (2013) 1-823 (in Polish).
  • [174] A.J. Nowak, L.A. Dobrzański, R. Rybczyński, R. Mech, Finite Element Method application for modelling of internal oesophageal prosthesis, Archives of Materials Science and Engineering 64/2 (2013) 198-204.
  • [175] T. Stefański, P. Malara, A. Kloc-Ptaszna, B. Janoszka, L. Postek-Stefańska, K. Tyrpień-Golder, L.A. Dobrzański, Erosive potential of calcium-supplemented citric acid on bovine enamel, Archives of Materials Science and Engineering 64/2 (2013) 175-181.
  • [176] J. Żmudzki, G. Chladek, P. Malara, L.A. Dobrzański, M. Zorychta, K. Basa, The simulation of mastication efficiency of the mucous-borne complete dentures, Archives of Materials Science and Engineering 63/2 (2013) 75-86.
  • [177] G. Chladek, J. Żmudzki, P. Malara, L.A. Dobrzański, C. Krawczyk, Effect of influence of introducing silver nanoparticles on tribological characteristics of soft liner, Archives of Materials Science and Engineering 62/1 (2013) 5-14.
  • [178] M. Król, L.A. Dobrzański, Ł. Reimann, I. Czaja, Surface quality in selective laser melting of metal powders, Archives of Materials Science and Engineering 60/2 (2013) 87-92.
  • [179] Ł. Reimann, L.A. Dobrzański, Influence of the casting temperature on dental Co-base alloys properties, Archives of Materials Science and Engineering 60/1 (2013) 5-12.
  • [180] L.A. Dobrzański, Ł. Reimann, Digitization procedure of creating 3D model of dental bridgework reconstruction, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 469-476.
  • [181] S. Rumiński, B. Ostrowska, W. Swięszkowski, M. Lewandowska-Szumieł, Human Adipose-Derived Stem Cells differentiate into osteoblast-like cells on ε-Poly- caprolactone/Tricalcium Phosphate Composite Scaffolds, EMRS Fall Meeting, Warsaw, 2013.
  • [182] S. Rumiński, B. Ostrowska, W. Swięszkowski, M. Lewandowska-Szumieł, Osteogenic Differentiation of Human Adipose-Derived Stem Cells on Polycaprolactone/Tricalcium Phosphate Composite Scaffolds, TERMIS, Istanbul, 2013, 287.
  • [183] M. Noga, A. Pawlak, B. Dybała, B. Dąbrowski, W. Swięszkowski, M. Lewandowska-Szumieł, Prepara-tion and Evaluation of Biological Properties of Bioimplants Composed of Adipose Derived Stem Cells and Porous Titanium Scaffold (Ti-6Al-7Nb) with HAp/Ca-P Surface, TERMIS, Istanbul, 2013, 733.
  • [184] I.M. Wojak-Cwik, V. Hintze, M. Schnabelrauch, S. Moeller, P. Dobrzynski, E. Pamula, D. Scharnweber, Poly(L-lactide-co-glycolide) scaffolds coated with collagen and glycosaminoglycans: Impact on proliferation and osteogenic differentiation of human mesenchymal stem cells, Journal of Biomedical Materials Research A 101/11 (2013) 3109-3122, doi: 10.1002/ jbm.a.34620.
  • [185] P. Wilczek, M. Zembala, T. Cichoń, R. Smolarczyk, S. Szala, M. Zembala, Scaffold construction for effective transfer of cardiac stem cells to the damaged heart, Kardiochirurgia i Torakochirurgia Polska 9/2 (2012) 231-242.
  • [186] E. Stodolak-Zych, A. Frączek-Szczypta, A. Wiecheć, M. Błażewicz, Nanocomposite Polymer Scaffolds for Bone Tissue Regeneration, Acta Physica Polonica A 121/2 (2012) 518-521.
  • [187] M.T. Błażewicz et al., Nanocomposite materials for regenerative medicine, Project N N507 463537, 2009- 2012.
  • [188] L. Rzeszutko, Z. Siudak, A. Włodarczak, A. Lekston, R. Depukat, A. Ochała, R.J. Gil, W. Balak, M. Marć, J. Kochman, W. Zasada, D. Dudek, Use of bioresorbable vascular scaffolds (BVS) in patients with stable angina and acute coronary syndromes, Polish National Registry, Kardiologia Polska 72/12 (2014) 1394-1399. doi: 10.5603/KP.a2014.0147.
  • [189] A.D. Dobrzańska-Danikiewicz, Computer integrated development prediction methodology in materials surface engineering, Open Access Library 1/7 (2012) 1-289 (in Polish).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-15219588-3d67-47ce-a0e4-256fa2bf97ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.