Czasopismo
2022
|
R. 98, nr 4
|
53--57
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Specyfika zarządzania elektrownią wodną w izolowanym systemie
Języki publikacji
Abstrakty
The paper describes the distinctive features of the isolated power system of Tajikistan, significant part of which is constituted by the hydropower plants; identifies the main problems of the electric power system of the Republic of Tajikistan in terms of power generation; describes specific features of HPP cascade management; proposes a method of determining the alternative fully drawn down level of the Norak HPP reservoir, taking into account the water level requirements in various water volume conditions from the point of view of power generation increase; estimates the economic efficiency of reducing the deficit of electricity in the power system with view to long-term optimization.
W artykule opisano charakterystyczne cechy izolowanego systemu elektroenergetycznego Tadżykistanu, którego znaczną część stanowią elektrownie wodne; identyfikuje główne problemy systemu elektroenergetycznego Republiki Tadżykistanu w zakresie wytwarzania energii; opisuje specyficzne cechy zarządzania kaskadowego HPP; proponuje metodę określenia alternatywnego całkowicie obniżonego poziomu zbiornika Norak HPP z uwzględnieniem wymagań poziomu wody w różnych warunkach objętości wody z punktu widzenia przyrostu mocy; szacuje ekonomiczną efektywność redukcji deficytu energii elektrycznej w systemie elektroenergetycznym z myślą o długoterminowej optymalizacji.
Czasopismo
Rocznik
Tom
Strony
53--57
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Tajik Technical University named after academic M. S. Osimi, Dushanbe 734042, Tajikistan, sultonzoda.sh@mail.ru
- Ural Federal University, 19, Mira Street, Yekaterinburg, 620002, Russian Federation, murodbek_03@mail.ru
autor
- Ural Federal University, 19, Mira Street, Yekaterinburg, 620002, Russian Federation, s.e.kokin@urfu.ru
- Ural Federal University, 19, Mira Street, Yekaterinburg, 620002, Russian Federation, dmstepan@gmail.com
autor
- Riga Technical University, LV1048 Riga, Latvia, Inga.Zicmane@rtu.lv
- Tajik Technical University named after academic M. S. Osimi, Dushanbe 734042, Tajikistan, dzhuraevsh@mail.ru
- Branch of the National Research University 'Moscow Power Engineering Institute' in Dushanbe City
Bibliografia
- [1] Feng, Zhong-kai, Wen-jing Niu, and Chun-tian Cheng, Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm, Energy, 153 (2018), pp. 706-718.
- [2] Thaeer Hammid Ali, et al., A review of optimization algorithms in solving hydro generation scheduling problems, Energies, 13.11 (2020), 2787.
- [3] Ibanez Eduardo, et al., Enhancing hydropower modeling in variable generation integration studies, Energy, 74 (2014), pp. 518-528.
- [4] Nikitin Viacheslav, Nikolay Abasov, and Evgeny Osipchuk, Modeling of Long-term Operating Regimes of Hydro Power Plants as Part of Energy and Water Systems in the Context of Uncertainty, E3S Web of Conferences, 209 (2020).
- [5] Liao Sheng-li, et al, Long-term generation scheduling of hydropower system using multi-core parallelization of particle swarm optimization, Water Resources Management, 31.9 (2017), pp. 2791-2807.
- [6] Ahmad Asmadi, et al, Reservoir optimization in water resources: a review, Water resources management 28.11 (2014), pp. 3391-3405.
- [7] Azamathulla H.Md, et al., Comparison between genetic algorithm and linear programming approach for real time operation, Journal of Hydro-environment Research 2.3 (2008), pp. 172-181.
- [8] Ngoc Trieu Anh, Kazuaki Hiramatsu, and Masayoshi Harada. "Optimizing the rule curves of multi-use reservoir operation using a genetic algorithm with a penalty strategy." Paddy and Water environment 12.1 (2014): pp. 125-137.
- [9] Kumar D. Nagesh, and Falguni Baliarsingh, Folded dynamic programming for optimal operation of multireservoir system, Water Resources Management, 17.5 (2003), pp. 337-353.
- [10] Braga Benedito, and Paulo SF Barbosa, Multiobjective real-time reservoir operation with a network flow algorithm 1, JAWRA Journal of the American Water Resources Association 37.4 (2001), pp. 837-852.
- [11] Xenarios Stefanos, Murodbek Laldjebaev, and Ronan Shenhav, Agricultural water and energy management in Tajikistan: a new opportunity, International Journal of Water Resources Development, 37.1 (2021), pp. 118-136.
- [12] Safaraliev M. Kh, et al, Energy Potential Estimation of the Region’s Solar Radiation Using a Solar Tracker, Applied Solar Energy, 56.4 (2020), pp. 270-275.
- [13] Laldjebaev M., R. Isaev, and A. Saukhimov, Renewable energy in Central Asia: An overview of potentials, deployment, outlook, and barriers, Energy Reports 7 (2021), pp. 3125-3136.
- [14] Ghulomzoda A. et al., Recloser-Based Decentralized Control of the Grid with Distributed Generation in the Lahsh District of the Rasht Grid in Tajikistan, Central Asia, Energies, 13 (2020), p. 3673.
- [15] Asanov M.S. et al., Algorithm for calculation and selection of micro hydropower plant taking into account hydrological parameters of small watercourses mountain rivers of Central Asia, Int. J. Hydrogen Energy, 46 (2021), № 75. pp. 37109-37119
- [16] Ghulomzoda A. et al., A Novel Approach of Synchronization of Microgrid with a Power System of Limited Capacity. Sustainability, 13(2021), p. 13975.
- [17] Matrenin P. et al., Adaptive ensemble models for medium-term forecasting of water inflow when planning electricity generation under climate change, Energy Reports, 7 (2021).
- [18] Kirgizov A.K. et al., Expert system application for reactive power compensation in isolated electric power systems, Int. J. Electr. Comput. Eng., 11 (2021), No 5, pp. 3682-3691.
- [19] Masih A. et al., Application of Dual Axis Solar Tracking System in Qurghonteppa, Tajikistan, in Proceedings of 2019 the 7th International Conference on Smart Energy Grid Engineering, SEGE 2019, 2019, no. 2, pp. 250–254.
- [20] Matrenin P. et al., Medium-term load forecasting in isolated power systems based on ensemble machine learning models, Energy Reports, 7 (2021).
- [21] Kirgizov A., et al, Characteristics of Relative Growth forHPP Power Systems of Tajikistan, IOP Conference Series: Materials Science and Engineering, 883 (2020), No. 1.
- [22] Filippova T.A., Sidorkin Yu. M., and Rusina A.G., Optimization of electric power plants and power systems regimes, Novosibirsk: NSTU publishing House, 2007, 356 p.
- [23] Yuri Sekretarev, Sherkhon Sultonov and Victor Shalnev, Optimal Control Regime of the Vakhsh Hydropower Reservoirs to Reduce Electricity Shortages in Tajikistan, Applied Mechanics and Materials, 792 (2015), pp. 446-450.
- [24] Safaraliev Murodbek, et al., The transient analysis of the hydrogenerator of Nurek HPP subject to automatic excitation control action." Przegląd Elektrotechniczny 96 (2020), No. 8, pp.35-38.
- [25] Kokin S.E., et al., Transient stability analysis in rotor winding of hydrogenerator at various short circuit values in power grid in consideration with AEC, in 2019 16th Conference on Electrical Machines, Drives and Power Systems, ELMA 2019 - Proceedings, 2019, pp. 1–4.
- [26] Sekretarev Yu. A., Sultonov Sh.M.,and Nazarov M. Kh, The possibility of additional drawdown of the Norak reservoir to increase production, Hydropower Stations in the XXI century: collection of materials of the Third All-Russian Scientific and Practical Conference. Sayanogorsk, 2016, pp. 384-388.
- [27] Sekretarev Yu. A., Zhdanovich A.A., and Mitrofanov S.V., Hydropower engineering: contra. of the task and method, Novosibirsk: NSTU Publishing house, 2013, 64 p.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-150a0377-9d87-4f14-8691-3c01b96267d4