Warianty tytułu
Języki publikacji
Abstrakty
Current concern over the decrease in the use of fossil fuels has led to the study of various options as an alternative to replace them in the transportation and industrial sectors. Different materials, such as agricultural products, lignocellulosic residues, solid wastewater products, and algae, can be used in the production of biochar and, through a sulfonation process, it can be converted it into a heterogeneous acid catalyst. The purpose of this study was employed coconut mesocarp as lignocellulosic biomass feedstock, obtaining sulfonated biochar (BACS), and evaluates its use in biodiesel production, comparing it with a KOH catalyst. The methodology included the pyrolysis of coconut mesocarp and the activation with H2 SO4 for BACS production. BACS was characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, BET surface area analysis and elemental analysis. The biodiesel obtained by BACS and biodiesel obtained by KOH were compared using international biodiesel standards. An activated sulfonated biochar with a sulfonation percentage of 15.23% was successfully obtained, providing a higher FAME conversion percentage than the KOH catalyst. During the characterization of the biodiesel obtained with both catalysts, it was found that KOH meets the specified standards, while the BACS catalyst requires variations in reaction temperature or blending with diesel to comply with the biodiesel characteristics. Additionally, it was observed that the coconut mesocarp-based catalyst showed a 2.78% reduction after the first working cycle, allowing for its reuse without the need for a new sulfonation process.
Rocznik
Tom
Strony
358--368
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
- Universidad de Costa Rica, Sede del Caribe, Ruta Nacional Primaria 32, Limón, Costa Rica
autor
- Centro Investigación Ingeniería de Materiales, Universidad de Costa Rica, San José Province, San Pedro Costa Rica, Karina.rodriguezmora@ucr.ac.cr
- Unidad de Recursos Forestales, Instituto de Investigaciones en Ingeniería, Universidad de Costa Rica, San José Province, San Pedro, Costa Rica
autor
- Universidad de Costa Rica, Sede del Caribe, Ruta Nacional Primaria 32, Limón, Costa Rica, eddy.jiron@ucr.ac.cr
autor
- Unidad de Recursos Forestales, Instituto de Investigaciones en Ingeniería, Universidad de Costa Rica, San José Province, San Pedro, Costa Rica
- Escuela de Ingeniería en Biosistemas, Universidad de Costa Rica, Costa Rica
- Escuela de Lenguas Modernas, Universidad de Costa Rica, San José Province, San Pedro, Costa Rica
Bibliografia
- 1. Abdelmoez, W., Tayeb, A.M., Mustafa, A., Abdelhamid, M. 2016. Green approach for biodiesel production from jojoba oil supported by process modeling and simulation. International Journal of Chemical Reactor Engineering, 14(1), 185–193. https://doi.org/10.1515/ijcre-2015-0070
- 2. Akers, S.M., Conkle, J.L., Thomas, S.N., Rider, K.B. 2006. determination of the heat of combustion of biodiesel using bomb calorimetry. A Multidisciplinary Undergraduate Chemistry Experiment. Journal of Chemical Education, 83(2), 260. https://doi.org/10.1021/ed083p260
- 3. Ao, S., Rokhum, S.L. 2022. Recent advances in the valorization of biodiesel by-product glycerol to solketal. Journal of Chemistry. Hindawi Limited. https://doi.org/10.1155/2022/4938672
- 4. ASTM. n.d. D6751 − 23a Standard Specification for Biodiesel Fuel Blendstock (B100) for Middle Distillate Fuels 1. https://doi.org/10.1520/D6751-23A
- 5. Bastos, R.R.C., da Luz Corrêa, A.P., da Luz, P.T.S., da Rocha Filho, G.N., Zamian, J.R., da Conceição, L.R.V. 2020. Optimization of biodiesel production using sulfonated carbon-based catalyst from an amazon agro-industrial waste. Energy Conversion and Management, 205, 112457. https://doi.org/10.1016/j.enconman.2019.112457
- 6. Benjumea, P.N., Álvarez, Á.M., Molina, A.P. 2006. Predicción del efecto de la temperatura sobre la viscosidad del biodiesel de aceite de palma y sus mezclas con diesel convencional. Universidad Nacional de Colombia Sede Manizales. https://repositorio.unal.edu.co/handle/unal/36392
- 7. Biernat, K., Matuszewska, A., Samson-Bręk, I., Owczuk, M. 2021. Biological methods in biodiesel production and their environmental impact. Applied Sciences, 11(22), 10946. https://doi.org/10.3390/app112210946
- 8. Bora, A.P., Dhawane, S.H., Anupam, K., Halder, G. 2018. Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst. Renewable Energy, 121, 195–204. https://doi.org/10.1016/j.renene.2018.01.036
- 9. Boro, J., Konwar, L.J., Thakur, A.J., Deka, D. 2014. Ba doped CaO derived from waste shells of T striatula (TS-CaO) as heterogeneous catalyst for biodiesel production. Fuel, 129, 182–187. https://doi.org/10.1016/j.fuel.2014.03.067
- 10. Corrales Aguilera, P., Hernández Chaverri, R.A., Miranda Morales, B., Méndez Rodríguez, G. 2022. Retrospective of biodiesel and byproducts in Costa Rica: their integration with the National Bioeconomy Strategy 2020-2030. Repertorio Científico, 25(2), 61–76. https://revistas.uned.ac.cr/index.php/repertorio/article/view/3924
- 11. Díaz-Caleño, F. 2020. Evaluación del pirólisis como un método para la obtención de combustibles líquidos a partir de los plásticos generados en la Universidad Autónoma de Occidente. Universidad Autónoma de Occidente, Colombia. https://repositorioslatinoamericanos.uchile.cl/handle/2250/3451901
- 12. Endut, A., Abdullah, S.H.Y.S., Hanapi, N.H.M., Hamid, S.H.A., Lananan, F., Kamarudin, M.K.A., Umar, R., Juahir, H., Khatoon, H. 2017. Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology. International Biodeterioration & Biodegradation, 124, 250–257. https://doi.org/10.1016/j.ibiod.2017.06.008
- 13. Espinoza Montero, J.A., Amador Vargas, G.M., Navarro Navarro, J.D., Rodríguez Mora, K.M. 2022. Elaboración de Placas de Aislamiento Térmico a partir de Fibra de Coco. InterSedes. https://doi.org/10.15517/isucr.v23i48.49852
- 14. Falbo, L., Perrone, D., Morrone, P., Algieri, A. 2022. Integration of biodiesel internal combustion engines and transcritical organic Rankine cycles for waste-heat recovery in small-scale applications. International Journal of Energy Research, 46(4), 5235–5249. https://doi.org/10.1002/er.7515
- 15. Fan, X., Wang, X., Zhao, B., Wan, J., Tang, J., Guo, X. 2022. Sorption mechanisms of diethyl phthalate by nutshell biochar derived at different pyrolysis temperature. Journal of Environmental Chemical Engineering, 10(2), 107328. https://doi.org/10.1016/j.jece.2022.107328
- 16. Fraile, J.M., García-Bordejé, E., Pires, E., Roldán, L. 2014. New insights into the strength and accessibility of acid sites of sulfonated hydrothermal carbon. Carbon, 77, 1157–1167. https://doi.org/10.1016/j.carbon.2014.06.059
- 17. Garg, D., Dashmana, A., Verma, C., Garg, A., Jain, S. 2023. Deep learning-based analysis of process parameters of biodiesel production using biochar as a catalyst. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.356
- 18. González, M.E., Cea, M., Reyes, D., Romero-Hermoso, L., Hidalgo, P., Meier, S., Benito, N., Navia, R. 2017. Functionalization of biochar derived from lignocellulosic biomass using microwave technology for catalytic application in biodiesel production. Energy Conversion and Management, 137, 165–173. https://doi.org/10.1016/j.enconman.2017.01.063
- 19. Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., Natarajan, M. 2012. Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143
- 20. Hosseinzadeh-Bandbafha, H., Tan, Y.H., Kansedo, J., Mubarak, N.M., Liew, R.K., Yek, P.N.Y., Aghbashlo, M., Ng, H.S., Chong, W.W.F., Lam, S.S., Verma, M., Pen, W., Tabatabaei, M. 2023. Assessing biodiesel production using palm kernel shellderived sulfonated magnetic biochar from the life cycle assessment perspective. Energy, 282. https://doi.org/10.1016/j.energy.2023.128758
- 21. Igboke, O.J., Odejobi, O.J., Orimolade, T., Prevatt, G.H., Krishnan, S. 2023. Composition and Morphological Characteristics of Sulfonated Coconut Shell Biochar and its Use for Corncob Hydrolysis. Waste and Biomass Valorization, 14(9), 3097–3113. https://doi.org/10.1007/s12649-023-02080-0
- 22. İnan, B., Koçer, A.T., Özçimen, D.B. 2023. Valorization of lignocellulosic wastes for low-cost and sustainable algal biodiesel production using biochar-based solid acid catalyst. Journal of Analytical and Applied Pyrolysis, 173, 106095. https://doi.org/10.1016/j.jaap.2023.106095
- 23. Jayakumar, M., Karmegam, N., Gundupalli, M.P., Bizuneh Gebeyehu, K., Tessema Asfaw, B., Chang, S.W., Ravindran, B., Kumar Awasthi, M. 2021. Heterogeneous base catalysts: Synthesis and application for biodiesel production – A review. In Bioresource Technology. Elsevier Ltd, 331. https://doi.org/10.1016/j.biortech.2021.125054
- 24. Jirón García, E.G., Rodríguez Mora, K.M. 2022. Funcionalización de nanocelulosa de raquis de palma como adsorbente de cationes metálicos del agua. InterSedes. https://doi.org/10.15517/isucr.v23i48.49746
- 25. Kirubakaran, M., Arul Mozhi Selvan, V. 2018. A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews, 82, 390–401. https://doi.org/10.1016/j.rser.2017.09.039
- 26. Konwar, L.J., Das, R., Thakur, A.J., Salminen, E., Mäki-Arvela, P., Kumar, N., Mikkola, J.-P., Deka, D. 2014. Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste. Journal of Molecular Catalysis A: Chemical, 388–389, 167–176. https://doi.org/10.1016/j.molcata.2013.09.031
- 27. Kumar, N., Raheman, H. 2022. Production, characterization and utilization of second generation biodiesel blend in diesel engine using water and nanoparticles as additives. Fuel, 308, 122063. https://doi.org/10.1016/j.fuel.2021.122063
- 28. Lathiya, D.R., Bhatt, D.V., Maheria, K.C. 2018. Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresource Technology Reports, 2, 69–76. https://doi.org/10.1016/j.biteb.2018.04.007
- 29. Li, W., Yang, K., Peng, J., Zhang, L., Guo, S., Xia, H. 2008. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial Crops and Products, 28(2), 190–198. https://doi.org/10.1016/j.indcrop.2008.02.012
- 30. Lugo, M., Bergolla, D., Rodríguez, K. 2015. Producción de Biodiesel a partir de la transesterificación de aceites vegetales Residuales con KOH como catalizador. Ciencia, 22
- 31. Malaika, A., Ptaszyńska, K., Kozłowski, M. 2021. Conversion of renewable feedstock to bio-carbons dedicated for the production of green fuel additives from glycerol. Fuel, 288, 119609. https://doi.org/10.1016/j.fuel.2020.119609
- 32. Maleki, B., Ashraf Talesh, S.S., Mansouri, M. 2022. Comparison of catalysts types performance in the generation of sustainable biodiesel via transesterification of various oil sources: a review study. In Materials Today Sustainability. Elsevier Ltd, 18. https://doi.org/10.1016/j.mtsust.2022.100157
- 33. Marcano, L., Machillanda, A.E., Sojo, M., Quijada, K., DI Scipio, S. 2014. Estudio de la obtención de biodiesel a partir de productos secundarios de la reacción de transesterificación de aceites residuales de cocina. Revista de La Facultad de Ingeniería Universidad Central de Venezuela, 29, 65–74.
- 34. Marchetti, J.M., Pedernera, M.N., Schbib, N.S. 2011. Production of biodiesel from acid oil using sulfuric acid as catalyst: kinetics study. International Journal of Low-Carbon Technologies, 6(1), 38–43. https://doi.org/10.1093/ijlct/ctq040
- 35. Ma’rifah, Y.N., Nata, I., Wijayanti, H., Mirwan, A., Irawan, C., Putra, M.D., Hidetaka, K. 2019. Onestep synthesis to enhance the acidity of a biocarbon-based sulfonated solid acid catalyst. International Journal of Technology, 10(3), 512. https://doi.org/10.14716/ijtech.v10i3.2924
- 36. Mehta, P.S., Anand, K. 2009. Estimation of a lower heating value of vegetable oil and biodiesel fuel. Energy & Fuels, 23(8), 3893–3898. https://doi.org/10.1021/ef900196r
- 37. Mendonça, I.M., Paes, O.A.R.L., Maia, P.J.S., Souza, M.P., Almeida, R.A., Silva, C.C., Duvoisin, S., & de Freitas, F.A. 2019. New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study. Renewable Energy, 130, 103–110. https://doi.org/10.1016/j.renene.2018.06.059
- 38. Meng, Y., Contescu, C.I., Liu, P., Wang, S., Lee, S.-H., Guo, J., Young, T.M. 2021. Understanding the local structure of disordered carbons from cellulose and lignin. Wood Science and Technology, 55(3), 587–606. https://doi.org/10.1007/s00226-021-01286-6
- 39. MIDEPLAN. 2023. Agenda 2030. El sistema de las Naciones Unidas y los ODS en Costa Rica. https://ods.cr/
- 40. Monge González, R. 2022, September 22. La agricultura y agroindustria como sectores claves para una transformación estructural vertical: Dando el salto al desarrollo. CrHoy.
- 41. Ngaosuwan, K., Goodwin, J.G., Prasertdham, P. 2016. A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renewable Energy, 86, 262–269. https://doi.org/10.1016/j.renene.2015.08.010
- 42. Panwar, N.L., Pawar, A., Salvi, B.L. 2019. Comprehensive review on production and utilization of biochar. In SN Applied Sciences. Springer Nature, 1(2). https://doi.org/10.1007/s42452-019-0172-6
- 43. PROCOMER. 2020, December 11. PROCOMER identifica oportunidades para la exportación de subproductos de coco. Procomer.Com. https://www.procomer.com/noticia/exportador-noticia/procomer-identifica-oportunidades-para-la-exportacion-desubproductos-de-coco/
- 44. Pydimalla, M., Husaini, S., Kadire, A., Kumar Verma, R. 2023. Sustainable biodiesel: A comprehensive review on feedstock, production methods, applications, challenges and opportunities. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.593
- 45. Ramírez Verduzco, L.F. 2013. Density and viscosity of biodiesel as a function of temperature: empirical models. Renewable and Sustainable Energy Reviews, 19, 652–665. https://doi.org/10.1016/j.rser.2012.11.022
- 46. Rao, B.V.S.K., Chandra Mouli, K., Rambabu, N., Dalai, A.K., Prasad, R.B.N. 2011. Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production. Catalysis Communications, 14(1), 20–26. https://doi.org/10.1016/j.catcom.2011.07.011
- 47. Rashid, W.N.W.A., Uemura, Y., Kusakabe, K., Osman, N.B., Abdullah, B. 2014. Synthesis of Biodiesel from Palm Oil in Capillary Millichannel Reactor: Effect of Temperature, Methanol to Oil Molar Ratio, and KOH Concentration on FAME Yield. Procedia Chemistry, 9, 165–171. https://doi.org/10.1016/j.proche.2014.05.020
- 48. Reglamento Técnico Centroamericano RTCA 75.02.43:07, 2007. https://faolex.fao.org/docs/pdf/sica179855anx.pdf
- 49. Singh, D., Sharma, D., Sharma, P.K., Jhalani, A., Sharma, D.K. 2022. Characterization of homogenous acid catalyzed biodiesel production from palm oil: experimental investigation and numerical simulation. Environmental Science and Pollution Research, 30(12), 34481–34502. https://doi.org/10.1007/s11356-022-24515-2
- 50. Thangaraj, B., Solomon, P.R., Muniyandi, B., Ranganathan, S., Lin, L. 2019. Catalysis in biodiesel production—a review. Clean Energy, 3(1), 2–23. https://doi.org/10.1093/ce/zky020
- 51. Xu, H., Ou, L., Li, Y., Hawkins, T.R., Wang, M. 2022. Life cycle greenhouse gas emissions of biodiesel and renewable diesel production in the United States. Environmental Science and Technology, 56(12), 7512– 7521. https://doi.org/10.1021/acs.est.2c00289
- 52. Yu, B., Chang, Z., Wang, C. 2016. The key prepyrolysis in lignin-based activated carbon preparation for high performance supercapacitors. Materials Chemistry and Physics, 181, 187–193. https://doi.org/10.1016/j.matchemphys.2016.06.048
- 53. Yusuff, A.S., Thompson-Yusuff, K.A., Porwal, J. 2022. Sulfonated biochar catalyst derived from eucalyptus tree shed bark: synthesis, characterization and its evaluation in oleic acid esterification. RSC Advances, 12(17), 10237–10248. https://doi.org/10.1039/D1RA09179D
- 54. Zeng, D., Liu, S., Gong, W., Wang, G., Qiu, J., Chen, H. 2014. Synthesis, characterization and acid catalysis of solid acid from peanut shell. Applied Catalysis A: General, 469, 284–289. https://doi.org/10.1016/j.apcata.2013.09.038
- 55. Zheng, Y., Shadloo, M.S., Nasiri, H., Maleki, A., Karimipour, A., Tlili, I. 2020. Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renewable Energy, 153, 1296–1306. https://doi.org/10.1016/j.renene.2020.02.087
- 56. Zhong, Y., Deng, Q., Zhang, P., Wang, J., Wang, R., Zeng, Z., Deng, S. 2019. Sulfonic acid functionalized hydrophobic mesoporous biochar: Design, preparation and acid-catalytic properties. Fuel, 240, 270–277. https://doi.org/10.1016/j.fuel.2018.11.152
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-14fdee82-895f-4f0b-8e16-ecb2a306ef56