Czasopismo
2022
|
Vol. 22, no. 3
|
art. no. e113
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Hydroforming (HF) can precisely control the shape of complex parts and has been widely used in the automotive and aviation fields. However, HF as a low-strain rate process is not conducive to improve the plastic deformation property of materials. Electromagnetic forming (EMF) is a high-speed forming method and can significantly increase the material-forming limit, but possesses poor shape-control ability for complex parts with intricate shapes and curves. In this study, electromagnetic hydraulic forming (EMHF) process was proposed, and the dynamic deformation behaviors of 5052-O aluminum alloy sheet during EMF and EMHF were reported. Compared with EMF, during EMHF the sheet was more closely bonded to the die, and the forming accuracy was higher. Numerical simulation results show that the maximum deformation velocity and the maximum equivalent plastic strain rate of the 5052-O sheet are 93.4 m s−1 and 7329.6 s−1, respectively. The EMHF process can be categorized as a high-strain rate forming method. For EMHF process, the sheet metal with a rounded angle error of 0.3 mm could be obtained. Therefore, EMHF process can improve the plastic deformation capacity of the material and exhibits high forming accuracy.
Czasopismo
Rocznik
Tom
Strony
art. no. e113
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
autor
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
autor
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
autor
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China, cuixh622@csu.edu.cn
- Light Alloy Research Institute, Central South University, Changsha 410083, China
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People’s Republic of China
autor
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
autor
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
Bibliografia
- 1. Zhou BJ, Xu YC. Wrinkle behavior of hydroforming of aluminum alloy double layer sheets. JOM. 2016;68:3201-7.
- 2. Chen YZ, Liu W, Zhang ZC, Xu YC, Yuan SJ. Analysis of wrinkling during sheet hydroforming of curved surface shell considering reverse bulging effect. Int J Mech Sci. 2017;120:70-80.
- 3. Reddy PV, Reddy BV, Ramulu PJ. Evolution of hydroforming technologies and its applications-a review. J Adv Manuf Syst. 2020;19:737-80.
- 4. Ye MS, Li HF, Wang YG, Qian CF. Hydroforming of toroidal bellows: process simulation and quality control. Materials. 2020;14:142-57.
- 5. Wang L, Xu XF, Fan YB, Wei LM. Loading path design of thin-walled aluminum alloy T-shaped tube hydroforming process based on the control of limit pressure. Int J Adv Manuf Technol. 2020;108:3119-31.
- 6. Imbert JM, Winkler SL, Worswick MJ. The effect of tool-sheet interaction on damage evolution in electromagnetic forming of aluminum alloy sheet. J Eng Mater Technol. 2005;127:145-53.
- 7. Golovashchenko SF. Material formability and coil design in electromagnetic forming. J Mater Eng Perform. 2007;16:314-20.
- 8. Woo MA, Noh HG, An WJ, Song WJ, Kang BS, Kim J. Numerical study on electrohydraulic forming process to reduce the bouncing effect in electromagnetic forming. Int J Adv Manuf Technol. 2017;89:1813-25.
- 9. Noh HG, Song WJ, Kang BS, Kim J. Numerical and experimental approach to reduce bouncing effect in electromagnetic forming process using cushion plate. J Mech Sci Technol. 2014;28:3263-71.
- 10. Liu DH, Li CF, Yu HP. Numerical modeling and deformation analysis for electromagnetically assisted deep drawing of AA5052 sheet. Trans Nonferrous Metals Soc China. 2009;19(05):1294-302.
- 11. Iriondo E, Gutierrez MA, Gutierrez B, Alcaraz JL, Daehnet GS. Electromagnetic impulse calibration of high strength sheet metal structures. J Mater Process Technol. 2011;211:909-15.
- 12. Cui XH, Zhang ZW, Yu HL, Xiao XT, Cheng YQ. Springback calibration of a U-shaped electromagnetic impulse forming process. Metals. 2019;9:603-15.
- 13. Kamal M, Shang J, Cheng V, Hatkevich S, Daehn GS. Agile manufacturing of a micro-embossed case by a two-step electromagnetic forming process. J Mater Process Technol. 2017;190:41-50.
- 14. Su HL, Huang L, Li JJ, Ma F, Huang P, Feng F. Two-step electromagnetic forming: a new forming approach to local features of large-size sheet metal parts. Int J Mach Tools Manuf. 2018;124:99-116.
- 15. Gillard AJ, Golovashchenko SF, Mamutov AV. Effect of quasistatic prestrain on the formability of dual phase steels in electrohydraulic forming. J Manuf Process. 2013;15:201-18.
- 16. Avrillaud G, Mazars G, Cantergiani E, Beguet F. Examples of how increased formability through high strainrates can be used in electro-hydraulic forming and electromagnetic forming industrial applications. J Manuf Mater Process. 2021;5:96-113.
- 17. Zheng QL, Yu HP. Hyperplasticity mechanism in DP600 sheets during electrohydraulic free Forming. J Mater Process Technol. 2020;279: 116582.
- 18. Golovashchenko SF, Gillard AJ, Mamutov AV. Formability of dual phase steels in electrohydraulic forming. J Mater Process Technol. 2013;213:1191-212.
- 19. Bonnen JJ, Golovashchenko SF, Dawson SA, Mamutov AV. Electrode erosion observed in electrohydraulic discharges used in pulsed sheet metal forming. J Mater Eng Perform. 2013;22:3946-58.
- 20. Niaraki RJ, Fazli A, Soltanpour M. Electromagnetically activated high-speed hydroforming process: A novel process to overcome the limitations of the electromagnetic forming process[J]. CIRP J Manuf Sci Technol. 2019;27:21-30.
- 21. Su H. Research on the FLD and uniaxial tensile behaviour of 5A02 Aluminium Alloy Sheet in the Electromagnetic Pulse Forming (Master Thesis). Harbin. 2013.
- 22. Chen DY, Xu Y, Zhang SH, Ma Y. A novel method to evaluate the high strain rate formability of sheet metals under impact hydroforming. J Mater Process Technol. 2019;287: 116553.
- 23. Azhari A, Schindler C, Hilbert K. Influence of water jet peening and smoothing on the material surface and properties of stainless steel 304. Surf Coat Technol. 2014;258:1176-82.
- 24. Azhari A, Schindler C, Li B. Effect of water jet peening on aluminum alloy 5005. Int J Adv Manuf Technol. 2013;67(1-4):785-95.
- 25. Srivastava M, Hloch S, Krejci L. Residual stress and surface properties of stainless steel welded joints induced by ultrasonic pulsed water jet peening. Measurement. 2018;127(10):453-62.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-14e460f1-fb81-4eb8-97eb-6c8e6c3283ee