Czasopismo
2016
|
Vol. 36, Fasc. 1
|
121--135
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we present several heavy-tailed distributions belonging to the new class J of distributions obeying the principle of a single big jump introduced by Beck et al. (2015). We describe the structure of this class from different angles. First, we show that heavy-tailed distributions in the class J are automatically strongly heavy-tailed and thus have tails which are not too irregular. Second, we show that such distributions are not necessarily weakly tail equivalent to a subexponential distribution. We also show that the class of heavy-tailed distributions in J which are neither long-tailed nor dominatedly-varying-tailed is not only non-empty but even quite rich in the sense that it has a non-empty intersection with several other well-established classes. In addition, the integrated tail distribution of some particular of these distributions shows that the Pakes-Veraverbeke-Embrechts theorem for the class J does not hold trivially.
Czasopismo
Rocznik
Tom
Strony
121--135
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- School of Mathematical Sciences, Soochow University, xh19910825@hotmail.com
autor
- Institut für Mathematik, Technische Universität Berlin, ms@math.tu-berlin.de
autor
- School of Mathematical Sciences, Soochow University, ybwang@suda.edu.cn
autor
- School of Mathematics and Statistics, Changshu Institute of Technology, cuishaol@126.com
Bibliografia
- [1] S. Beck, J. Blath, and M. Scheutzow, A new class of large claim size distributions: Definition, properties, and ruin theory, Bernoulli 21 (4) (2015), pp. 2457-2483.
- [2] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, 1997.
- [3] S. Foss, D. Korshunov, and S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, second edition, Springer, 2013.
- [4] C. Klüppelberg, On subexponential distributions and integrated tails, J. Appl. Probab. 25 (1988), pp. 132-141.
- [5] C. Klüppelberg, Asymptotic ordering of distribution functions and convolution semigroups, Semigroup Forum 40 (1990), pp. 77-92.
- [6] T. Shimura and T. Watanabe, Infinite divisibility and generalized subexponentiality, Bernoulli 11 (2005), pp. 445-469.
- [7] Y. Wang, F. Cheng, and Y. Yang, Dominant relations on some subclasses of heavy-tailed distributions and their applications, Chinese J. Appl. Probab. Statist. 21 (1) (2005), pp. 21-30 (in Chinese).
- [8] H. Xu, M. Scheutzow, and Y. Wang, On a transformation between distributions obeying the principle of a single big jump, J. Math. Anal. Appl. 430 (2015), pp. 672-684.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-14c56474-e879-40d3-9860-69dd576dd154