Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2019 | Vol. 67, no. 4 | 1191--1203
Tytuł artykułu

Geostatistical analysis of hydrochemical variations and nitrate pollution causes of groundwater in an alluvial fan plain

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geostatistics was used in a typical alluvial fan to reveal its applicability to spatial distribution analysis and controlling mechanisms of groundwater chemistry. Normal distribution test and optimal geostatistical interpolation models for various groundwater quality indicators were discussed in this study. The optimal variogram model of each indicator was determined using prediction error analysis. The infuences of human activities and structural factors on the groundwater chemistry were also determined by variability intensity and the sill ratio. The results showed that nitrate content can be served as groundwater quality indicator, which was most sensitive to human activities. The nitrate concentration of both shallow and deep groundwater showed a decreasing trend from the northwest to the southeast. In addition, the spatial distribution of groundwater nitrate was associated with the land-use type and the lithological properties of aquifer. Rapid urbanization in the northwestern part intensifed groundwater extraction and aggravated the pollutant input. The central area showed little increase in nitrate content in the shallow and deep groundwater, and the efect of lateral recharge from the upstream water on the deep groundwater in the central area was greater than that of the vertical recharge from shallow groundwater. The present study suggests that geostatistics is helpful for analyzing the spatial distribution and distinguishing the infuences of anthropogenic and natural factors on groundwater chemistry.
Wydawca

Czasopismo
Rocznik
Strony
1191--1203
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
  • School of Renewable Energy, North China Electric Power University, Beijing 102206, China
autor
  • Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China, xiaoyong@swjtu.edu.cn
autor
  • School of Geographic Science, Nantong University, Nantong 226000, China
autor
  • Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science, Shijiazhuang 050061, China
autor
  • Beijing Water Science and Technology Institute, Beijing 100048, China
  • Beijing Water Science and Technology Institute, Beijing 100048, China
autor
  • Beijing Daxing Water Resources Bureau, Beijing 102600, China
autor
  • Beijing Water Science and Technology Institute, Beijing 100048, China
autor
  • Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
Bibliografia
  • 1. Abu-alnaeem MF, Yusoff I, Ng TF, Alias Y, Raksmey M (2018) Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: an integrated statistical, geostatistical and hydrogeochemical approaches study. Sci Total Environ 615:972–989. https://doi.org/10.1016/j.scitotenv.2017.09.320
  • 2. Adhikary PP, Chandrasekharan H, Chakraborty D, Kamble K (2010) Assessment of groundwater pollution in West Delhi, India using geostatistical approach. Environ Monit Assess 167:599–615
  • 3. Adhikary PP, Dash CJ, Bej R, Chandrasekharan H (2011) Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India. Environ Monit Assess 176:663–676
  • 4. Ahmad M, Chand S, Rafique HM (2016) Predicting the spatial distribution of sulfate concentration in groundwater of Jampur-Pakistan using geostatistical methods. Desalin Water Treat 57:1–10
  • 5. Alhamed M, Wohnlich S (2014) Environmental impact of the abandoned coal mines on the surface water and the groundwater quality in the south of Bochum, Germany. Environ Earth Sci 72:3251–3267
  • 6. Ali MH, Mustafa A-RA, El-Sheikh AA (2016) Geochemistry and spatial distribution of selected heavy metals in surface soil of Sohag, Egypt: a multivariate statistical and GIS approach. Environ Earth Sci 75:1257. https://doi.org/10.1007/s12665-016-6047-x
  • 7. Andelov M, Kunkel R, Uhan J, Wendland F (2014) Determination of nitrogen reduction levels necessary to reach groundwater quality targets in Slovenia. J Environ Sci 26:1806–1817
  • 8. Andrade AIASS, Stigter TY (2009) Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use. Agric Water Manag 96:1751–1765
  • 9. Assaf H, Saadeh M (2009) Geostatistical Assessment of Groundwater Nitrate Contamination with Reflection on DRASTIC Vulnerability Assessment: the Case of the Upper Litani Basin, Lebanon. Water Resour Manag 23:775–796
  • 10. Baalousha H (2010) Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand. Agric Water Manag 97:240–246
  • 11. Bao Z, Wu W, Liu H, Chen H, Yin S (2014) Impact of long-term irrigation with sewage on heavy metals in soils, crops, and groundwater—a case study in Beijing. Pol J Environ Stud 23:309–318
  • 12. Barca E, Passarella G (2008) Spatial evaluation of the risk of groundwater quality degradation: a comparison between disjunctive kriging and geostatistical simulation. Environ Monit Assess 137:261–273
  • 13. Bhat S, Motz LH, Pathak C, Kuebler L (2015) Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA. Environ Monit Assess 187:1–15
  • o
  • 14. Bian J, Nie S, Wang R, Wan H, Liu C (2018) Hydrochemical characteristics and quality assessment of groundwater for irrigation use in central and eastern Songnen Plain, Northeast China. Environ Monit Assess 190:382. https://doi.org/10.1007/s10661-018-6774-4
  • 15. Bodrud-Doza M, Bhuiyan MAH, Islam SMD-U, Quraishi SB, Muhib MI, Rakib MA, Rahman MS (2019) Delineation of trace metals contamination in groundwater using geostatistical techniques: a study on Dhaka City of Bangladesh. Groundw Sustain Dev 9:100212. https://doi.org/10.1016/j.gsd.2019.03.006
  • 16. Bonton A, Rouleau A, Bouchard C, Rodriguez MJ (2010) Assessment of groundwater quality and its variations in the capture zone of a pumping well in an agricultural area. Agric Water Manag 97:824–834
  • 17. Carreira PM, Marques JM, Pina A, Gomes AM, Fernandes PAG, Santos FM (2010) Groundwater assessment at Santiago Island (Cabo Verde): a multidisciplinary approach to a recurring source of water supply. Water Resour Manag 24:1139–1159
  • 18. Chandan KS, Yashwant BK (2017) Optimization of groundwater level monitoring network using GIS-based geostatistical method and multi-parameter analysis: a case study in Wainganga Sub-basin, India. Chin Geogr Sci 27:201–215. https://doi.org/10.1007/s11769-017-0859-9
  • 19. Chaudhuri S, Ale S (2014) An appraisal of groundwater quality in Seymour and Blaine aquifers in a major agro-ecological region in Texas, USA. Environ Earth Sci 71:2765–2777
  • 20. Chaves e Carvalho SDP et al (2015) Predict volume of trees integrating Lidar and Geostatistics. Sci For Sci 43:627–637
  • 21. Chen A et al (2018) Temporal-spatial variations and influencing factors of nitrogen in the shallow groundwater of the nearshore vegetable field of Erhai Lake, China. Environ Sci Pollut Res 25:4858–4870. https://doi.org/10.1007/s11356-017-0791-7
  • 22. Desbarats AJ, Logan CE, Hinton MJ, Sharpe DR (2002) On the kriging of water table elevations using collateral information from a digital elevation model. J Hydrol 255:25–38
  • 23. El Alfy M, Abdalla F, Moubark K, Alharbi T (2019) Hydrochemical equilibrium and statistical approaches as effective tools for identifying groundwater evolution and pollution sources in arid areas. Geosci J 23:299–314. https://doi.org/10.1007/s12303-018-0039-7
  • 24. Elgallal M, Fletcher L, Evans B (2016) Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: a review. Agric Water Manag 177:419–431
  • 25. Gu X et al (2017) Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain. Environ Monit Assess 189:514
  • 26. Gu X et al (2018) Hydrogeochemical characterization and quality assessment of groundwater in a long-term reclaimed water irrigation area, North China Plain. Water 10:1209. https://doi.org/10.3390/w10091209
  • 27. Gundogdu KS, Guney I (2007) Spatial Analysis of Groundwater Levels Using Universal Kriging. J Earth Syst Sci 116:49–55
  • 28. Júnez-Ferreira HE, Herrera GS, Saucedo E, Pacheco-Guerrero A (2019) Influence of available data on the geostatistical-based design of optimal spatiotemporal groundwater-level-monitoring networks. Hydrogeol J. https://doi.org/10.1007/s10040-018-01921-w
  • 29. Kanagaraj G, Elango L (2019) Chromium and fluoride contamination in groundwater around leather tanning industries in southern India: implications from stable isotopic ratio δ53Cr/δ52Cr, geochemical and geostatistical modelling. Chemosphere 220:943–953. https://doi.org/10.1016/j.chemosphere.2018.12.105
  • 30. Kasper JW, Denver JM, York JK (2015) Suburban groundwater quality as influenced by turfgrass and septic sources, Delmarva Peninsula, USA. J Environ Qual 44:642. https://doi.org/10.2134/jeq2014.06.0280
  • 31. Kim H-s, Park S-r (2016) Hydrogeochemical characteristics of groundwater highly polluted with nitrate in an agricultural area of Hongseong, Korea. Water 8:345. https://doi.org/10.3390/w8080345
  • 32. Klauberg C, Hudak AT, Bright BC, Boschetti L, Silva CA (2018) Use of ordinary kriging and Gaussian conditional simulation to interpolate airborne fire radiative energy density estimates. Int J Wildland Fire 27:228
  • 33. Kumar S, Singh RP (2016) Spatial distribution of soil nutrients in a watershed of Himalayan landscape using terrain attributes and geostatistical methods. Environ Earth Sci 75:1–11
  • 34. Li P, Li X, Meng X, Li M, Zhang Y (2016) Appraising groundwater quality and health risks from contamination in a semiarid region of Northwest China. Expo Health 8:1–19
  • 35. Li P, Tian R, Liu R (2018) Solute geochemistry and multivariate analysis of water quality in the Guohua phosphorite mine, Guizhou Province, China. Expo Health. https://doi.org/10.1007/s12403-018-0277-y
  • 36. Machiwal D, Jha MK (2015) Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. J Hydrol Reg Stud 4:80–110. https://doi.org/10.1016/j.ejrh.2014.11.005
  • 37. Maroufpoor S, Fakherifard A, Shiri J (2019) Study of the spatial distribution of groundwater quality using soft computing and geostatistical models. Ish J Hydraul Eng 25(2):232–238. https://doi.org/10.1080/09715010.2017.1408036
  • 38. Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266
  • 39. Niu Y, Yin S, Liu H, Wu W, Li B (2015) Use of geostatistics to determine the spatial variation of groundwater quality: a case study in Beijing’s reclaimed water irrigation area. Pol J Environ Stud 24:611–618
  • 40. Noshadi M, Sepaskhah AR (2005) Application of geostatistics for potential evapotranspiration estimation. Iran J Sci Technol Trans B Eng 29:343–355
  • 41. Ranjbar F, Jalali M (2016) The combination of geostatistics and geochemical simulation for the site-specific management of soil salinity and sodicity. Comput Electron Agric 121:301–312
  • 42. Razmkhah H, Abrishamchi A, Torkian A (2010) Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: a case study on Jajrood River (Tehran, Iran). J Environ Manag 91:852–860
  • 43. Saibi H, Semmar A, Mesbah M, Ehara S (2009) Variographic analysis of water table data from the Oued-Souf phreatic aquifer, northeastern part of the Algerian Sahara. Arab J Geosci 2:83–93
  • 44. Samsonova VP, Meshalkina JL, Blagoveschensky YN, Yaroslavtsev AM, Stoorvogel JJ (2018) The role of positional errors while interpolating soil organic carbon contents using satellite imagery. Precis Agric 19(6):1085–1099. https://doi.org/10.1007/s11119-018-9575-4
  • 45. Scarpelli M, Eickhoff J, Cuna E, Perlman S, Jeraj R (2018) Optimal transformations leading to normal distributions of positron emission tomography standardized uptake values. Phys Med Biol 63:35021. https://doi.org/10.1088/1361-6560/aaa175
  • 46. Shahabi M, Jafarzadeh AA, Neyshabouri MR, Ghorbani MA, Kamran KV (2016) Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods. Arch Agron Soil Sci 63:151–160
  • 47. Shi Z, Wang G (2017) Evaluation of the permeability properties of the Xiaojiang fault zone using hot springs and water wells. Geophys J Int 209:1526–1533
  • 48. Shlomi S, Michalak AM (2007) A geostatistical framework for incorporating transport information in estimating the distribution of a groundwater contaminant plume. Water Resour Res 50:259–268
  • 49. Theodossiou N, Latinopoulos P (2006) Evaluation and optimisation of groundwater observation networks using the Kriging methodology. Environ Model Softw 21:991–1000
  • 50. Tran GT, Oliver KIC, Holden PB, Edwards NR, Sóbester A, Challenor P (2019) Multi-level emulation of complex climate model responses to boundary forcing data. Clim Dyn 52:1505–1531. https://doi.org/10.1007/s00382-018-4205-4
  • 51. Uyan M, Cay T (2013) Spatial analyses of groundwater level differences using geostatistical modeling. Environ Ecol Stat 20:633–646
  • 52. Wang S, Wu W, Liu F, Yin S, Bao Z, Liu H (2015) Spatial distribution and migration of nonylphenol in groundwater following long-term wastewater irrigation. J Contam Hydrol 177–178:85–92
  • 53. WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva
  • 54. Xiao Y, Gu X, Yin S, Shao J, Cui Y, Zhang Q, Niu Y (2016) Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. SpringerPlus 5:1–15
  • 55. Xiao Y, Gu X, Yin S, Pan X, Shao J, Cui Y (2017) Investigation of geochemical characteristics and controlling processes of groundwater in a typical long-term reclaimed water use area. Water 9:800. https://doi.org/10.3390/w9100800
  • 56. Xiao Y, Shao J, Frape S, Cui Y, Dang X, Wang S, Ji Y (2018) Groundwater origin, flow regime and geochemical evolution in arid endorheic watersheds: a case study from the Qaidam Basin, Northwest China. Hydrol Earth Syst Sci 22:4381–4400. https://doi.org/10.5194/hess-22-4381-2018
  • 57. Zheng Z, Zhang F, Ma F, Chai X, Zhu Z, Shi J, Zhang S (2009) Spatiotemporal changes in soil salinity in a drip-irrigated field. Geoderma 149:243–248
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-14a38b29-be9e-416b-bb33-10af2ca82822
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.