Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 61, no 1 | 35--45
Tytuł artykułu

Quantization Dimension Estimate of Inhomogeneous Self-Similar Measures

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider an inhomogeneous measure μ with the inhomogeneous part a self-similar measure ν, and show that for a given r∈(0,∞) the lower and the upper quantization dimensions of order r of μ are bounded below by the quantization dimension Dr(ν) of ν and bounded above by a unique number κr∈(0,∞), related to the temperature function of the thermodynamic formalism that arises in the multifractal analysis of μ.
Wydawca

Rocznik
Strony
35--45
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Department of Mathematics The University of Texas { Pan American 1201 West University Drive Edinburg, TX 78539-2999, U.S.A., roychowdhurymk@utpa.edu
Bibliografia
  • [B] M. R. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.
  • [F1] K. J. Falconer, Techniques in Fractal Geometry, Wiley, Chichester, 1997.
  • [F2] K. J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theoret. Probab. 7 (1994), 681-701.
  • [GL1] S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Math. 1730, Springer, Berlin, 2000.
  • [GL2] S. Graf and H. Luschgy, The quantization dimension of self-similar probabilities, Math. Nachr. 241 (2002), 103-109.
  • [GN] R. Gray and D. Neuhoff, Quantization, IEEE Trans. Inform. Theory 44 (1998), 2325-2383.
  • [HJKPS] T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia and B. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A 33 (1986), 1141-1151; erratum, ibid. 34 (1986), 1601.
  • [H] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
  • [L] A. Lasota, A variational principle for fractal dimensions, Nonlinear Anal. 64 (2006), 618-628.
  • [OS1] L. Olsen and N. Snigireva, Lq spectra and Rényi dimensions of inhomogeneous self-similar measures, Nonlinearity 20 (2007), 151-175.
  • [OS2] L. Olsen and N. Snigireva, In-homogenous self-similar measures and their Fourier transforms, Math. Proc. Cambridge Philos. Soc. 144 (2008), 465-493.
  • [OS3] L. Olsen and N. Snigireva, Multifractal spectra of in-homogeneous self-similar measures, Indiana Univ. Math. J. 57 (2008), 1789-1843.
  • [P] N. Patzschke, Self-conformal multifractal measures, Adv. Appl. Math. 19 (1997), 486-513.
  • [S] A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), 111-115.
  • [Za] P. L. Zador, Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Trans. Inform. Theory 28 (1982), 139-149.
  • [Zh] S. Zhu, Quantization dimension for condensation systems, Math. Z. 259 (2008), 33-43.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1499c3fc-64c8-4757-9c48-683e0bf4991f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.