Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 12, No. 1 | 155--212
Tytuł artykułu

On German verb sense disambiguation: A three-part approach based on linking a sense inventory (GermaNet) to a corpus through annotation (TGVCorp) and using the corpus to train a VSD classifier (TTvSense)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We develop a three-part approach to Verb Sense Disambiguation (VSD) in German. After considering a set of lexical resources and corpora, we arrive at a statistically motivated selection of a subset of verbs and their senses from GermaNet. This sub-inventory is then used to disambiguate the occurrences of the corresponding verbs in a corpus resulting from the union of TüBa-D/Z, Salsa, and E-VALBU. The corpus annotated in this way is called TGVCorp. It is used in the third part of the paper for training a classifier for VSD and for its comparative evaluation with a state-of-the-art approach in this research area, namely EWISER. Our simple classifier outperforms the transformer-based approach on the same data in both accuracy and speed in German but not in English and we discuss possible reasons.
Wydawca

Rocznik
Strony
155--212
Opis fizyczny
Bibliogr. 117 poz., rys., tab., wykr.
Twórcy
  • Goethe University Frankfurt, Text Technology Lab FrankfurtamMain,Germany
  • Shikenso GmbH FrankfurtamMain,Germany
  • Goethe University Frankfurt, Text Technology Lab FrankfurtamMain,Germany
Bibliografia
  • 1. Giuseppe ABRAMI, Mevlüt BAGCI, Leon HAMMERLA, and Alexander MEHLER (2022), German Parliamentary Corpus (GerParCor), in Proceedings of the Language Resources and Evaluation Conference (LREC 2022), pp. 1900-1906, European Language Resources Association, Marseille, France.
  • 2. Jeff ALSTOTT, Ed BULLMORE, and Dietmar PLENZ (2014), powerlaw: a Python package for analysis of heavy-tailed distributions, PLoS ONE, 9(4):e95816, doi:10.1371/journal.pone.0095816.
  • 3. Nicholas ASHER, Márta ABRUSÁN, and Tim VAN DE CRUYS (2017), Types, meanings and co-composition in lexical semantics, in Stergios CHATZIKYRIAKIDIS and Zhaohui LUO, editors, Modern perspectives in type-theoretical semantics, number 98 in Studies in Linguistics and Philosophy, pp. 135-161, Springer International Publishing AG, Cham, Switzerland, doi:10.1007/978-3-319-50422-3_6.
  • 4. Collin F. BAKER, Charles J. FILLMORE, and John B. LOWE (1998), The Berkeley FrameNet project, in 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, COLING-ACL ’98, August 10-14, 1998, Université de Montréal, Montréal, Quebec, Canada. Proceedings of the Conference., pp. 86-90, http://aclweb.org/anthology/P/P98/P98-1013.pdf.
  • 5. Marco BARONI, Silvia BERNARDINI, Adriano FERRARESI, and Eros ZANCHETTA (2009), The WaCky wide web: A collection of very large linguistically processed web-crawled corpora, Language Resources & Evaluation, 43:209-226, doi:10.1007/s10579-009-9081-4.
  • 6. Emily M. BENDER, Timnit GEBRU, Angelina MCMILLAN-MAJOR, and Shmargaret SHMITCHELL (2021), On the dangers of stochastic parrots: Can language models be too big?, in Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, p. 610-623, Association for Computing Machinery, New York, NY, USA, ISBN 9781450383097, doi:10.1145/3442188.3445922.
  • 7. James BERGSTRA and Yoshua BENGIO (2012), Random search for hyper-parameter optimization, Journal of Machine Learning Research, 13:281-305, http://dl.acm.org/citation.cfm?id=2188395.
  • 8. James BERGSTRA, Daniel YAMINS, and David D. COX (2013), Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures, in Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pp. 115-123, http://proceedings.mlr.press/v28/bergstra13.html.
  • 9. Michele BEVILACQUA and Roberto NAVIGLI (2020), Breaking through the 80% glass ceiling: Raising the state of the art in word sense disambiguation by incorporating knowledge graph information, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 2854-2864, Association for Computational Linguistics, Online, doi:10.18653/v1/2020.acl-main.255, https://aclanthology.org/2020.acl-main.255.
  • 10. Piotr BOJANOWSKI, Edouard GRAVE, Armand JOULIN, and Tomás MIKOLOV (2016), Enriching word vectors with subword information, CoRR, abs/1607.04606, http://arxiv.org/abs/1607.04606.
  • 11. Claire BONIAL, Julia BONN, Kathryn CONGER, Jena HWANG, Martha PALMER, and Nicholas REESEM (2015), English PropBank annotation guidelines, Technical report, Center for Computational Language and Education Research, Institute of Cognitive Science, University of Colorado at Boulder, http://propbank.github.io/.
  • 12. Zdravko BOTEV and Ad RIDDER (2017), Variance reduction, pp. 1-6, American Cancer Society, ISBN 9781118445112, doi:10.1002/9781118445112.stat07975, https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat07975.
  • 13. Sabine BRANTS, Stefanie DIPPER, Peter EISENBERG, Silvia HANSEN, Esther KÖNIG, Wolfgang LEZIUS, Christian ROHRER, George SMITH, and Hans USZKOREIT (2004), TIGER: Linguistic interpretation of a German corpus, Journal of Language and Computation, 2:597-620.
  • 14. Aljoscha BURCHARDT, Katrin ERK, Anette FRANK, Andrea KOWALSKI, Sebastian PADÓ, and Manfred PINKAL (2006), The SALSA corpus: A German corpus resource for lexical semantics, in Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC 2006), European Language Resources Association (ELRA), Genoa, Italy, http://www.lrec-conf.org/proceedings/lrec2006/pdf/339_pdf.pdf.
  • 15. Gennaro CHIERCHIA and Sally MCCONNELL-GINET (2000), Meaning and grammar - an introduction to semantics, MIT Press, Cambridge, 2 edition.
  • 16. Aaron CLAUSET, Cosma Rohilla SHALIZI, and Mark E. J. NEWMAN (2009), Power-law distributions in empirical data, SIAM Review, 51(4):661-703, doi:10.1137/070710111, Society of Industrial and Applied Mathematics.
  • 17. Robin COOPER (2011), Copredication, quantification and frames, in Sylvain POGODALLA and Jean-Philippe PROST, editors, Logical aspects of computational linguistics, number 6736 in Lecture Notes in Computer Science, pp. 64-79, Springer, Berlin and Heidelberg, doi:10.1007/978-3-642-22221-4_5.
  • 18. D. Alan CRUSE (2000), Meaning in language, Oxford University Press, New York.
  • 19. Gábor CSÁRDI and Tamás NEPUSZ (2006), The igraph software package for complex network research, InterJournal, Complex Systems:1695, https://igraph.org.
  • 20. Benjamin DAVID, Sylvia SPRINGORUM, and Sabine SCHULTE IM WALDE (2014), German perception verbs: Automatic classification of prototypical and multiple non-literal meanings, in Proceedings of the 12th Konvens 2014.
  • 21. Henriëtte DE SWART (2011), Mismatches and coercion, in Claudia MAIENBORN, Klaus VON HEUSINGER, and Paul PORTNER, editors, Semantics: An international handbook of natural language meaning, volume 1 of Handbücher zur Sprach- und Kommunikationswissenschaft, chapter 25, pp. 574-597, De Gruyter Mouton, doi:10.1515/9783110226614.
  • 22. Jacob DEVLIN, Ming-Wei CHANG, Kenton LEE, and Kristina TOUTANOVA (2018), BERT: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805.
  • 23. Andrea DI FABIO, Simone CONIA, and Roberto NAVIGLI (2019), VerbAtlas: A novel large-scale verbal semantic resource and its application to semantic role labeling, in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 627-637, Association for Computational Linguistics, Hong Kong, China, doi:10.18653/v1/D19-1058, https://www.aclweb.org/anthology/D19-1058.
  • 24. Stefanie DIPPER, Hannah KERMES, Esther KÖNIG-BAUMER, Wolfgang LEZIUS, Frank H. MÜLLER, and Tylman ULE (2002), DEREKO – (DEutsches REferenzKOrpus) German Reference Corpus. Final report (Part I), Technical report, IMS: Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart, SfS: Seminar für Sprachwissenschaft, Universität Tübingen.
  • 25. Konrad DUDEN, Dieter BERGER, and Werner SCHOLZE (1980), Duden, volume 2, Bibliographisches Institut.
  • 26. Veena D. DWIVEDI (2013), Interpreting quantifier scope ambiguity: Evidence of heuristic first, algorithmic second processing, PLoS ONE, 8(11):e81461, doi:10.1371/journal.pone.0081461.
  • 27. Philip EDMONDS and Scott COTTON (2001), SENSEVAL-2: overview, in Proceedings of Second International Workshop on Evaluating Word Sense Disambiguation Systems, SENSEVAL@ACL 2001, Toulouse, France, July 5-6, 2001, pp. 1-5, https://aclanthology.info/papers/S01-1001/s01-1001.
  • 28. Gertrud FAAẞ and Kerstin ECKART (2013), SdeWaC - a corpus of parsable sentences from the web, in Iryna GUREVYCH, Chris BIEMANN, and Torsten ZESCH, editors, Language processing and knowledge in the web, pp. 61-68, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-40722-2.
  • 29. Christiane FELLBAUM, editor (1998), WordNet: An electronic lexical database, MIT Press, Cambridge.
  • 30. Christiane FELLBAUM and George A. MILLER (1998), Lexical chains as representations of context for the detection and correction of malapropisms, pp. 305-332, MITP, ISBN 9780262272551, https://ieeexplore.ieee.org/document/6287673.
  • 31. Christiane FELLBAUM, Martha PALMER, Hoa Trang DANG, Lauren DELFS, and Susanne WOLF (2001), Manual and automatic semantic annotation with WordNet, in Proceedings of the NAACL Workshop on WordNet and Other Lexical Resources: Applications, Customizations, pp. 1-8, Carnegie Mellon University Pittsburg, PA.
  • 32. Charles J. FILLMORE and Colin BAKER (2010), A frames approach to semantic analysis, in Bernd HEINE and Heiko NARROG, editors, The Oxford Handbook of Linguistic Analysis, pp. 313-340, Oxford University Press, Oxford.
  • 33. William A. GALE, Kenneth W. CHURCH, and David YAROWSKY (1992), One sense per discourse, in Speech and Natural Language: Proceedings of a Workshop Held at Harriman, New York, February 23-26, 1992, https://www.aclweb.org/anthology/H92-1045.
  • 34. Spandana GELLA, Desmond ELLIOTT, and Frank KELLER (2019), Cross-lingual visual verb sense disambiguation, in Proceedings of NAACL-HLT 2019, pp. 1998-2004.
  • 35. Brendan S. GILLON (1990), Ambiguity, generality, and indeterminacy: Tests and definitions, Synthese, 85(3):391-416.
  • 36. Dirk GOLDHAHN, Thomas ECKART, and Uwe QUASTHOFF (2012), Building large monolingual dictionaries at the Leipzig Corpora Collection: From 100 to 200 languages, in Nicoletta CALZOLARI, Khalid CHOUKRI, Thierry DECLERCK, Mehmet Ugur DOGAN, Bente MAEGAARD, Joseph MARIANI, Jan ODIJK, and Stelios PIPERIDIS, editors, Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012), European Language Resources Association (ELRA), Istanbul, Turkey, ISBN 978-2-9517408-7-7.
  • 37. Birgit HAMP and Helmut FELDWEG (1997), GermaNet – a lexical-semantic net for German, in Proceedings of ACL workshop Automatic Information Extraction and Building of Lexical Semantic Resources for NLP Applications, pp. 9-15.
  • 38. Wahed HEMATI (2020), TextImager-VSD: Large scale verb sense disambiguation and named entity recognition in the context of TextImager, Ph.D. thesis, Goethe-University Frankfurt, http://publikationen.ub.uni-frankfurt. de/frontdoor/index/index/docId/56089.
  • 39. Wahed HEMATI, Tolga USLU, and Alexander MEHLER (2016), TextImager: A distributed UIMA-based system for NLP, in COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference System Demonstrations, December 11-16, 2016, Osaka, Japan, pp. 59-63, https://www.aclweb.org/anthology/C16-2013/.
  • 40. Alexander HENLEIN and Alexander MEHLER (2022), What do toothbrushes do in the kitchen? How transformers think our world is structured, in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 5791-5807, Association for Computational Linguistics, Seattle, United States, doi:10.18653/v1/2022.naacl-main.425, https://aclanthology.org/2022.naacl-main.425.
  • 41. Verena HENRICH (2015), Word sense disambiguation with GermaNet, Ph.D. thesis, Universität Tübingen, doi:10.15496/publikation-4706, https://publikationen.uni-tuebingen.de/xmlui/handle/10900/63284.
  • 42. Verena HENRICH and Erhard HINRICHS (2012), A comparative evaluation of word sense disambiguation algorithms for German, in Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC 2012), pp. 576-583, European Language Resources Association (ELRA), Istanbul, Turkey, http://www.lrec-conf.org/proceedings/lrec2012/pdf/164_Paper.pdf.
  • 43. Verena HENRICH and Erhard W. HINRICHS (2013), Extending the TüBa-D/Z Treebank with GermaNet sense annotation, in Language processing and knowledge in the web – 25th International Conference, GSCL 2013, Darmstadt, Germany, September 25-27, 2013. Proceedings, pp. 89-96, doi:10.1007/978-3-642-40722-2_9.
  • 44. Verena HENRICH, Erhard W. HINRICHS, and Tatiana VODOLAZOVA (2011), Aligning GermaNet senses with Wiktionary sense definitions, in Human Language Technology Challenges for Computer Science and Linguistics – 5th Language and Technology Conference, LTC 2011, Poznań, Poland, November 25-27, 2011, Revised Selected Papers, pp. 329-342, doi:10.1007/978-3-319-08958-4_27.
  • 45. Verena HENRICH, Erhard W. HINRICHS, and Tatiana VODOLAZOVA (2012), Webcage – A web-harvested corpus annotated with GermaNet senses, in EACL 2012, 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, April 23-27, 2012, pp. 387-396, http://aclweb.org/anthology/E/E12/E12-1039.pdf.
  • 46. Ray JACKENDOFF (1983), Semantics and cognition, MIT Press, Cambridge, MA.
  • 47. Armand JOULIN, Edouard GRAVE, Piotr BOJANOWSKI, and Tomas MIKOLOV (2017), Bag of tricks for efficient text classification, in Proceedings of the 15th Conference of the EACL: Volume 2, Short Papers, pp. 427-431, Association for Computational Linguistics, Valencia, Spain, https://www.aclweb.org/anthology/E17-2068.
  • 48. David KAPLAN (1989), Demonstratives, in Joseph ALMOG, John PERRY, and Howard WETTSTEIN, editors, Themes from Kaplan, pp. 481-563, Oxford University Press, New York and Oxford.
  • 49. Rudi KELLER (1990), Sprachwandel: von der unsichtbaren Hand in der Sprache, Francke, Tübingen.
  • 50. Christopher KENNEDY (2011), Ambiguity and vagueness: An overview, in Claudia MAIENBORN, Klaus VON HEUSINGER, and Paul PORTNER, editors, Semantics: An international handbook of natural language meaning, volume 1 of Handbücher zur Sprach- und Kommunikationswissenschaft, chapter 23, pp. 507-535, De Gruyter Mouton, doi:10.1515/9783110226614.
  • 51. Adam KILGARRIFF (1997), “I don’t believe in word senses”, Computers and the Humanities, 31(2):91-113, doi:10.1023/A:1000583911091.
  • 52. Adam KILGARRIFF (1998), Gold standard datasets for evaluating word sense disambiguation programs, Computer Speech & Language, 12(4):453-472, doi:10.1006/csla.1998.0108.
  • 53. Paul R. KROEGER (2019), Analyzing meaning, number 5 in Textbooks in Language Sciences, Language Science Press, Berlin, second corrected and slightly revised edition.
  • 54. Jacqueline KUBCZAK (2009), Hier wird Ihnen geholfen! E-VALBU – Das elektronische Valenzwörterbuch deutscher Verben, Sprachreport, 4:17-23.
  • 55. Claudia KUNZE and Lothar LEMNITZER (2002), GermaNet - representation, visualization, application, in M. RODRIGUEZ GONZÁLEZ and C. PAZ SUÁREZ ARAUJO, editors, Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC 2002), pp. 1485-1491, European Language Resources Association, Paris.
  • 56. Els LEFEVER and Véronique HOSTE (2010), SemEval-2010 task 3: Cross-lingual word sense disambiguation, in 5th International Workshop on Semantic Evaluation (SemEval 2010), pp. 15-20, Association for Computational Linguistics (ACL).
  • 57. Els LEFEVER and Véronique HOSTE (2013), SemEval-2013 task 10: Cross-lingual word sense disambiguation, in Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pp. 158-166.
  • 58. Beth LEVIN (1993), English verb classes and alternations: A preliminary investigation, University of Chicago Press.
  • 59. Andy LÜCKING, Sebastian BRÜCKNER, Giuseppe ABRAMI, Tolga USLU, and Alexander MEHLER (2021), Computational linguistic assessment of textbooks and online texts by means of threshold concepts in economics, Frontiers in Education, 5:578475, doi:10.3389/feduc.2020.578475, https://www.frontiersin.org/articles/10.3389/feduc.2020.578475/.
  • 60. Fuli LUO, Tianyu LIU, Qiaolin XIA, Baobao CHANG, and Zhifang SUI (2018), Incorporating glosses into neural word sense disambiguation, in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pp. 2473-2482, https://aclanthology.info/papers/P18-1230/p18-1230.
  • 61. John LYONS (1977), Semantics, volume 1, Cambridge University Press, London.
  • 62. Alexander MEHLER, Rüdiger GLEIM, Wahed HEMATI, and Tolga USLU (2018), Skalenfreie online soziale Lexika am Beispiel von Wiktionary, in Stefan ENGELBERG, Henning LOBIN, Kathrin STEYER, and Sascha WOLFER, editors, Proceedings of 53rd Annual Conference of the Institut für Deutsche Sprache (IDS), March 14-16, Mannheim, Germany, pp. 269-291, De Gruyter, Berlin.
  • 63. Oren MELAMUD, Jacob GOLDBERGER, and Ido DAGAN (2016), context2vec: Learning generic context embedding with bidirectional LSTM, in Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany, August 11-12, 2016, pp. 51-61 http://aclweb.org/anthology/K/K16/K16-1006.pdf.
  • 64. George A. MILLER (1995), Wordnet: A lexical database for English, Communications of the ACM, 38(11):39-41, doi:10.1145/219717.219748, http://doi.acm.org/10.1145/219717.219748.
  • 65. George A. MILLER, Martin CHODOROW, Shari LANDES, Claudia LEACOCK, and Robert G. THOMAS (1994), Using a semantic concordance for sense identification, in Human Language Technology: Proceedings of a workshop held at Plainsboro, New Jersey, March 8-11, 1994, https://aclanthology.org/H94-1046.
  • 66. Marc MOENS and Mark STEEDMAN (1988), Temporal ontology and temporal reference, Computational Linguistics, 14(2):15-28.
  • 67. Roberto NAVIGLI (2009), Word sense disambiguation: A survey, ACM Computing Survey, 41(2):10:1-10:69, doi:10.1145/1459352.1459355, https://doi.org/10.1145/1459352.1459355.
  • 68. Roberto NAVIGLI, José CAMACHO-COLLADOS, and Alessandro RAGANATO (2017), Word sense disambiguation: A unified evaluation framework and empirical comparison, in Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers, pp. 99-110, https://aclanthology.info/papers/E17-1010/e17-1010.
  • 69. Roberto NAVIGLI, David JURGENS, and Daniele VANNELLA (2013), SemEval-2013 task 12: Multilingual word sense disambiguation, in Proceedings of the 7th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2013, Atlanta, Georgia, USA, June 14-15, 2013, pp. 222-231, http://aclweb.org/anthology/S/S13/S13-2040.pdf.
  • 70. Roberto NAVIGLI and Simone Paolo PONZETTO (2012), BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network, Artificial Intelligence, 193:217-250, ISSN 0004-3702, doi:10.1016/j.artint.2012.07.001.
  • 71. Mark E. J. NEWMAN (2005), Power laws, Pareto distributions and Zipf’s law, Contemporary Physics, 46:323-351.
  • 72. Geoffrey NUNBERG (1995), Transfers of meaning, Journal of Semantics, 12(2):109-132, doi:10.1093/jos/12.2.109.
  • 73. OPEN AI (2023), ChatGPT (version 3.5), https://github.com/openai/gpt-3.
  • 74. Martha PALMER, Hoa Trang DANG, and Christiane FELLBAUM (2007), Making fine-grained and coarse-grained sense distinctions, both manually and automatically, Natural Language Engineering, 13(2):137-163, doi:10.1017/S135132490500402X.
  • 75. Martha PALMER, Daniel GILDEA, and Nianwen XUE (2010), Semantic role labeling, Morgan & Claypool Publishers.
  • 76. Simone PAPANDREA, Alessandro RAGANATO, and Claudio Delli BOVI (2017), SupWSD: A flexible toolkit for supervised word sense disambiguation, in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017 – System Demonstrations, pp. 103-108, https://aclanthology.info/papers/D17-2018/d17-2018.
  • 77. Rebecca J. PASSONNEAU, Collin F. BAKER, Christiane FELLBAUM, and Nancy IDE (2012), The MASC word sense corpus, in Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC 2012), Istanbul, Turkey, May 23-25, 2012, pp. 3025-3030, http://www.lrec-conf.org/proceedings/lrec2012/summaries/589.html.
  • 78. Matthew E. PETERS, Mark NEUMANN, Mohit IYYER, Matt GARDNER, Christopher CLARK, Kenton LEE, and Luke ZETTLEMOYER (2018), Deep contextualized word representations, in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 2227-2237, https://aclanthology.info/papers/N18-1202/n18-1202.
  • 79. Mohammad Taher PILEHVAR and Jose CAMACHO-COLLADOS (2021), Embeddings in natural language processing: Theory and advances in vector representations of meaning, Morgan & Claypool Publishers.
  • 80. Sameer PRADHAN, Edward LOPER, Dmitriy DLIGACH, and Martha PALMER (2007), Semeval-2007 task 17: English lexical sample, SRL and all words, in Proceedings of the 4th International Workshop on Semantic Evaluations, SemEval@ACL 2007, Prague, Czech Republic, June 23-24, 2007, pp. 87-92, http://aclweb.org/anthology/S/S07/S07-1016.pdf.
  • 81. James PUSTEJOVSKY (1991), The generative lexicon, Computational Linguistics, 17:409-441.
  • 82. James PUSTEJOVSKY (1995), The generative lexicon, MIT Press, Cambridge, MA.
  • 83. Diana RAILEANU, Paul BUITELAAR, Spela VINTAR, and Jörg BAY (2002), Evaluation corpora for sense disambiguation in the medical domain, in Proceedings of the Third International Conference on Language Resources and Evaluation (LREC 2002), May 29-31, 2002, Las Palmas, Canary Islands, Spain, http://www.lrec-conf.org/proceedings/lrec2002/sumarios/166.htm.
  • 84. Prajit RAMACHANDRAN, Barret ZOPH, and Quoc V. LE (2017), Searching for activation functions, CoRR, abs/1710.05941, http://arxiv.org/abs/1710.05941.
  • 85. Shauli RAVFOGEL, Yanai ELAZAR, Jacob GOLDBERGER, and Yoav GOLDBERG (2020), Unsupervised distillation of syntactic information from contextualized word representations, arXiv preprint arXiv:2010.05265.
  • 86. Burghard B. RIEGER (1989), Unscharfe Semantik: Die empirische Analyse, quantitative Beschreibung, formale Repräsentation und prozedurale Modellierung vager Wortbedeutungen in Texten, Peter Lang, Frankfurt a. M.
  • 87. Burghard B. RIEGER (2001), Computing granular word meanings. A fuzzy linguistic approach in computational semiotics, in Paul WANG, editor, Computing with words, pp. 147-208, Wiley, New York.
  • 88. Sascha ROTHE, Shashi NARAYAN, and Aliaksei SEVERYN (2020), Leveraging pre-trained checkpoints for sequence generation tasks, Transactions of the Association for Computational Linguistics, 8:264-280, doi:10.1162/tacl_a_00313, https://aclanthology.org/2020.tacl-1.18.
  • 89. Josef RUPPENHOFER, Michael ELLSWORTH, Myriam SCHWARZER-PETRUCK, Christopher R. JOHNSON, and Jan SCHEFFCZYK (2016), FrameNet II: Extended theory and practice, Technical report, International Computer Science Institute.
  • 90. Jahn-Takeshi SAITO, Joachim WAGNER, Graham KATZ, P. D. Gerson REUTER, Michael B. BURKE, and Sabine REINHARD (2002), Evaluation of GermaNet: Problems using GermaNet for automatic word sense disambiguation, in LREC Workshop on WordNet Structure and Standardization and How these Affect WordNet Applications and Evaluation.
  • 91. Silke SCHEIBLE, Sabine SCHULTE IM WALDE, Marion WELLER, and Max KISSELEW (2013), A compact but linguistically detailed database for German verb subcategorisation relying on dependency parses from a web corpus: Tool, guidelines and resource, in Proceedings of the 8th Web as Corpus Workshop, pp. 63-72, Lancaster, UK.
  • 92. Anne SCHILLER, Simone TEUFEL, Christine STÖCKERT, and Christine THIELEN (1999), Guidelines für das Tagging deutscher Textcorpora mit STTS (Kleines und großes Tagset), Technical report, Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart.
  • 93. Karin Kipper SCHULER (2006), Verbnet: A broad-coverage, comprehensive verb lexicon, Ph.D. thesis, University of Pennsylvania, http://verbs.colorado.edu/~kipper/Papers/dissertation.pdf.
  • 94. Helmut SCHUMACHER, editor (1986), Verben in Feldern. Valenzwörterbuch zur Syntax und Semantik deutscher Verben, de Gruyter, Berlin and New York.
  • 95. Helmut SCHUMACHER, Jacqueline KUBCZAK, Renate SCHMIDT, and Vera DE RUITER (2004), VALBU – Valenzwörterbuch deutscher Verben, number 31 in Studien zur Deutschen Sprache, Narr, Tübingen.
  • 96. Hinrich SCHÜTZE (1998), Automatic word sense discrimination, Computational Linguistics, 24(1):97-123.
  • 97. Roland SCHÄFER (2015), Processing and querying large web corpora with the COW14 architecture, in Proceedings of Challenges in the Management of Large Corpora 3 (CMLC-3), UCREL, IDS, Lancaster, http://rolandschaefer.net/?p=749.
  • 98. Roland SCHÄFER and Felix BILDHAUER (2012), Building large corpora from the web using a new efficient tool chain, in Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC 2012), pp. 486-493, European Language Resources Association (ELRA), Istanbul, Turkey, ISBN 978-2-9517408-7-7, http://rolandschaefer.net/?p=70.
  • 99. Benjamin SNYDER and Martha PALMER (2004), The English all-words task, in Proceedings of the Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, SENSEVAL@ACL 2004, Barcelona, Spain, July 25-26, 2004, https://aclanthology.info/papers/W04-0811/w04-0811.
  • 100. Jan-Philipp SOEHN (2005), Selectional restrictions in HPSG: I’ll eat my hat!, in Stefan MÜLLER, editor, Proceedings of the HPSG05 Conference, pp. 343-353, Department of Informatics, University of Lisbon, CSLI Publications, Stanford.
  • 101. John F. SOWA (2000), Knowledge representation: Logical, philosophical, and computational foundations, Brooks/Cole.
  • 102. Luc STEELS (2011-12), Modeling the cultural evolution of language, Physics of Life Reviews, 8(4):339-356, doi:10.1016/j.plrev.2011.10.014, http://groups.lis.illinois.edu/amag/langev/paper/steels2011REVIEW.html.
  • 103. Angelika STORRER (2001), Digitale Wörterbücher als Hypertexte: Zur Nutzung des Hypertextkonzepts in der Lexikographie, in Chancen und Perspektiven computer-gestützter Lexikographie: Hypertext, Internet und SGML/XML für die Produktion und Publikation digitaler Wörterbücher, pp. 53-70, Max Niemeyer Verlag, Tübingen.
  • 104. Angelika STORRER (2010), Deutsche Internet-Wörterbücher: Ein Überblick, Lexicographica, 27(1):155-164.
  • 105. Heike TELLJOHANN, Erhard W. HINRICHS, Sandra KÜBLER, Heike ZINSMEISTER, and Kathrin BECK (2012), Stylebook for the Tübingen Treebank of Written German (TüBa-D/Z), Seminar für Sprachwissenschaft, Wilhelmstr. 19, D-72074 Tübingen, http://www.sfs.uni-tuebingen.de/fileadmin/ static/ascl/resources/tuebadz-stylebook-1201.pdf. THE MATHWORKS, INC. (2012), MATLAB and curve fitting toolbox release 2012, Natick, MA.
  • 106. Jörg TIEDEMANN (2012), Parallel data, tools and interfaces in OPUS, in Nicoletta CALZOLARI, Khalid CHOUKRI, Thierry DECLERCK, Mehmet Ugur DOGAN, Bente MAEGAARD, Joseph MARIANI, Jan ODIJK, and Stelios PIPERIDIS, editors, Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC 2012), European Language Resources Association (ELRA), Istanbul, Turkey, ISBN 978-2-9517408-7-7.
  • 107. Tolga USLU, Alexander MEHLER, Daniel BAUMARTZ, Alexander HENLEIN, and Wahed HEMATI (2018), fastsense: An efficient word sense disambiguation classifier, in Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan.
  • 108. Loïc VIAL, Benjamin LECOUTEUX, and Didier SCHWAB (2019), Sense vocabulary compression through the semantic knowledge of WordNet for neural word sense disambiguation, CoRR, abs/1905.05677, http://arxiv.org/abs/1905.05677.
  • 109. Piek VOSSEN (1998), Introduction to EuroWordNet, Computers and the Humanities, 32(2-3):73-89, doi:10.1023/A:1001175424222.
  • 110. Nan WANG, Jiwei LI, Yuxian MENG, Xiaofei SUN, Han QIU, Ziyao WANG, Guoyin WANG, and Jun HE (2022), An MRC framework for semantic role labeling, in Proceedings of the 29th International Conference on Computational Linguistics, pp. 2188-2198, International Committee on Computational Linguistics, Gyeongju, Republic of Korea, https://aclanthology.org/2022.coling-1.191.
  • 111. Stephen WECHSLER, Jean-Pierre KOENIG, and Anthony DAVIS (2021), Argument structure and linking, in Stefan MÜLLER, Anne ABEILLÉ, Robert D. BORSLEY, and Jean-Pierre KOENIG, editors, Head-Driven Phrase Structure Grammar: The handbook, Language Science Press, Berlin, https://langsci-press.org/catalog/book/259, prepublished book chapter.
  • 112. WIKTIONARY (2019), Free dictionary, https://www.wiktionary.org/, accessed: 2019-09-23.
  • 113. Ian H. WITTEN, Eibe FRANK, and Mark A. HALL (2011), Data mining: Practical machine learning tools and techniques, 3rd edition, Morgan Kaufmann, Elsevier, ISBN 9780123748560, http://www.worldcat.org/oclc/262433473.
  • 114. Yonghui WU, Mike SCHUSTER, Zhifeng CHEN, Quoc V. LE, Mohammad NOROUZI, Wolfgang MACHEREY, Maxim KRIKUN, Yuan CAO, Qin GAO, Klaus MACHEREY, Jeff KLINGNER, Apurva SHAH, Melvin JOHNSON, Xiaobing LIU, Lukasz KAISER, Stephan GOUWS, Yoshikiyo KATO, Taku KUDO, Hideto KAZAWA, Keith STEVENS, George KURIAN, Nishant PATIL, Wei WANG, Cliff
  • 115. YOUNG, Jason SMITH, Jason RIESA, Alex RUDNICK, Oriol VINYALS, Greg CORRADO, Macduff HUGHES, and Jeffrey DEAN (2016), Google’s neural machine translation system: Bridging the gap between human and machine translation, CoRR, abs/1609.08144, http://arxiv.org/abs/1609.08144.
  • 116. Yichu ZHOU and Vivek SRIKUMAR (2022), A closer look at how fine-tuning changes BERT, in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1046-1061, Association for Computational Linguistics, Dublin, Ireland, doi:10.18653/v1/2022.acl-long.75, https://aclanthology.org/2022.acl-long.75.
  • 117. Arnold M. ZWICKY and Jerrold M. SADOCK (1975), Ambiguity tests and how to fail them, in Syntax and Semantics volume 4, pp. 1-36, Academic Press, New York.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-14985e03-e703-45bd-8b2a-9fcd343aa2fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.