Warianty tytułu
Języki publikacji
Abstrakty
Laser surface texturing (LST) has emerged as a versatile and efficient technique for modifying surface properties across various materials. This paper provides an analysis of the characteristics and diverse applications of laser surface texturing. The paper begins by explaining the fundamental principles underlying LST, highlighting the mechanisms involved in material interaction and the resultant surface modifications. It explores the influence of laser parameters such as pulse duration, energy density, and wavelength on the texturing process, emphasizes their impact on surface morphology, roughness, and topographical features. Furthermore, this paper delves into the wide-ranging applications of LST across different industries and fields. It examines how LST enhances surface functionalities, including improvements in tribological properties, wettability, friction reduction, and biocompatibility. Additionally, the utilization of LST for creating microstructures enabling advanced functionalities in optics, electronics, biomedical devices, and energy harvesting systems is discussed. Moreover, the challenges and future directions in LST technology are highlighted, which encompass advances in precision, scalability, and integration of LST with other manufacturing processes. The potential environmental implications and economic feasibility of LST are also discussed.
Rocznik
Tom
Strony
240--248
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Kielce University of Technology – Poland
autor
- Kielce University of Technology – Poland
autor
- Kielce University of Technology – Poland
autor
- Cracow University of Technology – Poland
autor
- Military Institute of Engineer Technology – Poland
autor
- University of Zilina – Slovakia
Bibliografia
- 1. Borkowski, S., Ulewicz, R., Selejdak, J., Konstanciak, M., Klimecka-Tatar, D., 2012. The use of 3x3 matrix to evaluation of ribbed wire manufacturing technology, METAL 2012 - 21st International Conference on Metallurgy and Materials, 1722-1728.
- 2. Convert, L., Bourillot, E., François, M., Pocholle, N., Baras, F., Politano, O., Costil, S., 2022. Laser-textured titanium surface characterisation. Applied Surface Science, 586, 152807, DOI: 10.1016/J.APSUSC.2022.152807
- 3. Dabek, L., Kapjor, A., Orman, L.J., 2016. Ethyl alcohol boiling heat transfer on multilayer meshed surfaces, AIP Conf. Proc., 1745, art. 020005. DOI: 10.1063/1.4953699
- 4. Dabek, L., Kapjor, A., Orman, Ł.J., 2018. Boiling heat transfer augmentation on surfaces covered with phosphor bronze meshes, MATEC Web of Conf., 168, art. 07001. DOI: 10.1051/matecconf/201816807001
- 5. Dominik, I., Kwasniewski, J., Krzysztof, L., Dwornicka, R., 2013. Preliminary signal filtering in Self-Excited Acoustical System for stress change measurement, Chinese Control Conference CCC, X’ian, 7505-7509.
- 6. Dudek, A., Lisiecka, B., Ulewicz, R., 2017. The effect of alloying method on the structure and properties of sintered stainless steel, Archives of Metallurgy and Materials, 62(1), 281-287. DOI: 10.1515/amm-2017-0042
- 7. Gądek-Moszczak, A., Wojnar, L., Piwowarczyk, A., 2019. Comparison of selected shading correction methods, System Safety: Human - Technical Facility -Environment, 1(1), 819-826. DOI: 10.2478/czoto-2019-0105
- 8. Goharshenas Moghadam, S., Parsimehr, H., Ehsani, A., 2021. Multifunctional superhydrophobic surfaces. Advances in Colloid and Interface Science, 290, DOI: 10.1016/j.cis.2021.102397
- 9. Jeyaprakash, N., Yang, C.-H., Kumar, D. R., Jeyaprakash, N., Yang, C.-H., Kumar, D. R., 2020. Laser Surface Modification of Materials. Practical Applications of Laser Ablation, DOI: 10.5772/INTECHOPEN.94439
- 10. Jia, Z. yuan, Ye, T., Ma, J. wei, Cao, X. kun, Liu, W., Yu, W. jiang, Gao, J., 2021. Effect of Process Parameters on the Hardness of Laser Surface Textured 5A06 Aluminum Alloy. Journal of Materials Engineering and Performance, 30(8), 5858–5867, DOI: 10.1007/S11665-021-05840-Y/FIGURES/6
- 11. Kuciel, S., Bazan, P., Liber-Kneć, A., Gadek-Moszczak, A., 2019. Physico-mechanical properties of the poly(oxymethylene) composites reinforced with glass fibers under dynamical loading, Polymers, 11(12), art.2064. DOI: 10.3390/polym11122064
- 12. Kumar, V., Verma, R., Kango, S., Sharma, V. S., 2021. Recent progresses and applications in laser-based surface texturing systems. Materials Today Communications, 26, 101736, DOI: 10.1016/J.MTCOMM.2020.101736
- 13. Lazov, L., Teirumnieks, E., Angelov, N., Yankov, E., 2023. Modification of the roughness of 304 stainless steel by laser surface texturing (LST). Laser Physics, 33(4), DOI: 10.1088/1555-6611/ACBB76
- 14. Li, S., Chen, H., Luo, T., Xiao, G., Yi, M., Chen, Z., Zhang, J., Xu, C., 2022. Tribological properties of laser surface texturing modified GCr15 steel under graphene/5CB lubrication. Journal of Materials Research and Technology, 18, 3598–3611, DOI: 10.1016/J.JMRT.2022.04.030
- 15. Mazur, K., Gadek-Moszczak, A., Liber-Knec, A., Kuciel, S., 2021. Mechanical behavior and morphological study of polytetrafluoroethylene (PTFE) composites under static and cyclic loading condition, Materials, 14(7), art.1712. DOI: 10.3390/ma14071712
- 16. Miletić, I., Ilić, A., Nikolić, R.R., Ulewicz, R., Ivanović, L., Sczygiol, N., 2020. Analysis of selected properties of welded joints of the HSLA Steels, Materials, 13(6), art.1301. DOI: 10.3390/ma13061301
- 17. Moldovan, E. R., Doria, C. C., Ocaña, J. L., Baltes, L. S., Stanciu, E. M., Croitoru, C., Pascu, A., Roata, I. C., Tierean, M. H., 2022. Wettability and Surface Roughness Analysis of Laser Surface Texturing of AISI 430 Stainless Steel. Materials, 15(8), DOI: 10.3390/MA15082955
- 18. Orman, L.J., Chatys, R., 2011. Heat transfer augmentation possibility for vehicle heat exchangers, Transport Means – Proc. of the 15th Int. Conf., KTU, Lietuva, 9-12.
- 19. Pacana, A., Czerwinska, K., Dwornicka, R., 2021. Analysis of quality control efficiency in the automotive industry, Transportation Research Procedia, 55, 691-698. DOI: 10.1016/j.trpro.2021.07.037
- 20. Pietraszek, J., Radek, N., Goroshko, A.V., 2020. Challenges for the DOE methodology related to the introduction of Industry 4.0, Production Engineering Archives, 26(4), 190-194. DOI: 10.30657/pea.2020.26.33
- 21. Radek, M., Pietraszek, A., Kozień, A., Radek, K., Pietraszek, J., 2023. Matching Computational Tools to User Competence Levels in Education of Engineering Data Processing, Materials Research Proceedings, 34, 453-459. DOI: 10.21741/9781644902691-52
- 22. Radek, N., Pietraszek, J., Goroshko, A., 2018. The impact of laser welding parameters on the mechanical properties of the weld, AIP Conference Proceedings, 2017, art.020025. DOI: 10.1063/1.5056288
- 23. Radek, N., Pietraszek, J., Pasieczynski, Ł., 2019. Technology and application of anti-graffiti coating systems for rolling stock, METAL 2019 - 28th International Conference on Metallurgy and Materials, , 1127-1132. DOI: 10.37904/metal.2019.909
- 24. Radek, N., Pietraszek, J., Szczotok, A., Fabian, P., Kalinowski, A., 2020. Microstructure and tribological properties of DLC coatings, Materials Research Proceedings, 17, 171-176. DOI: 10.21741/9781644901038-26
- 25. Radek, N., Tokar, D., Kalinowski, A., Pietraszek, J., 2021. Influence of laser texturing on tribological properties of DLC coatings, Production Engineering Archives, 27(2), 119-123. DOI: 10.30657/pea.2021.27.15
- 26. Riveiro, A., Pou, P., del Val, J., Comesaña, R., Arias-González, F., Lusquiños, F., Boutinguiza, M., Quintero, F., Badaoui, A., Pou, J., 2020. Laser texturing to control the wettability of materials. Procedia CIRP, 94, 879–884, DOI: 10.1016/j.procir.2020.09.065
- 27. Siwiec, D., Dwornicka, R., Pacana, A., 2020. Improving the non-destructive test by initiating the quality management techniques on an example of the turbine nozzle outlet, Materials Research Proceedings, 17, 16-22. DOI: 10.21741/9781644901038-3
- 28. Ulewicz, R., 2014. Application of servqual method for evaluation of quality of educational services at the university of higher education, Polish Journal of Management Studies, 9, 254-264.
- 29. Ulewicz, R., 2018. Outsorcing quality control in the automotive industry, MATEC Web of Conf., 183, art.03001. DOI: 10.1051/matecconf/201818303001
- 30. Ulewicz, R., Nový, F., Selejdak, J., 2014. Fatigue strength of ductile iron in ultra-high cycle regime, Advanced Materials Research, 874, 43-48. DOI: 10.4028/www.scientific.net/AMR.874.43
- 31. Wei, X., Liao, Z., Liang, Y., Zhang, L., Wang, L., Chen, B., Shen, J., 2023. Superhydrophobic Fe-based amorphous alloy coatings with excellent anti-fouling and anti-corrosion properties by picosecond laser texturing. Applied Surface Science, 642, 158612, DOI: 10.1016/J.APSUSC.2023.158612
- 32. Zhou, X., Liu, Z., Zhu, X., Cai, Y., Hou, Z., Cao, Y., 2022. Friction regulation of laser textured PVA hydrogels against a titanium alloy. Optics & Laser Technology, 152, 108085, DOI: 10.1016/J.OPTLASTEC.2022.108085
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-14438c26-f920-4f6e-9277-ab1604aff3b6