Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we introduce a new method to analyze the convergence of the standard finite element method for Hamilton-Jacobi-Bellman equation with noncoercive operators with nonlinear source terms with the mixed boundary conditions. The method consists of combining Bensoussan-Lions algorithm with the characterization of the solution, in both the continuous and discrete contexts, as fixed point of contraction. Optimal error estimates are then derived, first between the continuous algorithm and its finite element counterpart and then between the continuous solution and the approximate solution.
Czasopismo
Rocznik
Tom
Strony
452--461
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Department of Mathematics, University Badji Mokhtar Annaba, Box. 12, Annaba 23000, Algeria, miloudimath2@yahoo.fr
autor
- Department of Mathematics, University Badji Mokhtar Annaba, Box. 12, Annaba 23000, Algeria
autor
- Department of Mathematics, University Badji Mokhtar Annaba, Box. 12, Annaba 23000, Algeria
Bibliografia
- [1] L. C. Evans and A. Friedman, Optimal stochastic switching and the Dirichlet problem for the Bellman equations, Trans. Amer. Math. Soc. 253 (1979), 365–389.
- [2] H. Brezis and L. C. Evans, A variational approach to the Bellman-Dirichlet equation for two elliptic operators, Arch. Rational Mech. Anal. 71 (1979), 1–14.
- [3] P. L. Lions and J. L. Menaldi, Optimal control of stochastic integrals and Hamilton Jacobi Bellman equations (part I), SIAM J. Control Optim. 20 (1982), 58–81.
- [4] P. L. Lions, Resolution analytique des problemes de Bellman-Dirichlet, Acta Math. 146 (1981), 151–166.
- [5] P. Cortey Dumont, Sur l’analyse numerique des equations de Hamilton-Jacobi-Bellman, Math. Meth. Appl. Sci. 9 (1987), 198–209.
- [6] M. Boulbrachene and M. Haiour, The finite element approximation of Hamilton-Jacobi-Bellman equations, Comput. Math. Appl. 41 (2001), 993–1007.
- [7] M. Boulbrachene and P. Cortey Dumont, Optimal L∞-error estimate of a finite element method for Hamilton-Jacobi-Bellman equations, Numer. Funct. Anal. Optim. 7 (2009), 1–5.
- [8] S. Boulaaras and M. Haiour, The finite element approximation in parabolic quasi-variational inequalities related to impulse control problem with mixed boundary conditions, J. Taibah Univ. Sci. 7 (2013), 105–113.
- [9] S. Boulaaras and M. Haiour, L∞-asymptotic behavior for a finite element approximation in parabolic quasi-variational inequalities related to impulse control problem, Appl. Math. Comput. 217 (2011), 6443–6450.
- [10] S. Boulaaras and M. Haiour, A general case for the maximum norm analysis of an overlapping Schwarz methods of evolutionary HJB equation with nonlinear source terms with the mixed boundary conditions, Appl. Math. Inf. Sci. 9 (2015), no. 3, 18.
- [11] M. Boulbrachene, L∞-error estimates of a finite element method for the Hamilton Jacobi Bellman equations, Int. Cent. Theor. Phys. 1 (1995), 1–8.
- [12] J. Nitsche, L∞-convergence of finite element approximations, Mathematical aspects of finite element methods, Lect. Notes Math. 606 (1977), 261–274.
- [13] M. Boulbrachene, L∞-error estimate for a system of elliptic quasi-variational inequalities with noncoercive operators, Comput. Math. Appl. 45 (2003), 983–989.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-142e98a6-0488-4288-9373-c9f13c5cf9e1