Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 55, iss. 1 | 1--14
Tytuł artykułu

Pollution sources and metallic elements mobility recorded by heavy minerals in soils affected by Cu-smelting (Legnica, SW Poland)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy mineral particles are widely used in Earth science studies to show sediment provenance and weathering conditions. Such particles are particularly useful in polluted soils surrounding mining and smelting facilities because heavy minerals are common by-products of these activities and may accumulate in the soils. As such, the particles are suitable indicators of metallic element carriers and their stability in the soil environment. In this study, we analyze heavy mineral particles in two soils surrounding the active copper smelter (Legnica, SW, Poland). We show that particles associated with different smelting activities dominate the heavy mineral fraction. We note the general absence of sulfides in the fraction indicating that these minerals might have been entirely dissolved, but timing of this dissolution is uncertain (before or after deposition within soils). Currently, the carriers of potentially toxic elements are mainly secondary Fe oxides. Studies aiming at better estimation of the proportion of metallic elements contained in heavy mineral particles are needed to fully use the potential of these phases in polluted soil studies. We estimate that Pb contained in Pb-rich silicate glass constitutes.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
1--14
Opis fizyczny
Bibliogr. [45] poz., rys., tab., wykr.
Twórcy
  • Faculty of Life Sciences and Technology, Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland, rafal.tyszka@upwr.edu.pl (Corresponding author)
  • University of Wrocław, Institute of Geological Sciences, pl. Maxa Borna 9, 50-204 Wrocław, Poland
  • Laboratory of Electron Microscopy, Microanalysis and X-ray Diffraction, University of Warsaw, Faculty of Geology, ul. Żwirki i Wigury 93, 02- 089 Warszawa, Poland
  • University of Wrocław, Institute of Geological Sciences, pl. Maxa Borna 9, 50-204 Wrocław, Poland
Bibliografia
  • Bong, W. S. K., Matsumura, K., Yokoyama, K., & Nakai, I. (2010). Provenance study of early and middle bronze age pottery from Kaman-Kalehöyük, Turkey, by heavy mineral analysis and geochemical analysis of individual hornblende grains. Journal of Archaeological Science, 37, 2165–2178. https://doi.org/10.1016/j. jas.2010.03.013
  • Cabała, J., & Teper, L. (2007). Metalliferous constituents of rhizosphere soils contaminated by Zn–Pb mining in Southern Poland. Water, Air & Soil Pollution, 178, 351–362. https://doi.org/10.1007/s11270-006-9203-1
  • Carlson, W. R. (2016). Heavy minerals in soils from the Athabasca basin and the implications for exploration geochemistry of uranium deposits at depth. A thesis submitted to the Department of Geological Sciences and Geological Engineering Queen’s University Kingston, Ontario, Canada. http://hdl.handle. net/1974/15203
  • Cho, K. H., Jang, H., Hong, Y.-S., Kim, S. J., Basch, R. H., & Fash, J. W. (2008). The size effect of zircon particles on the friction characteristics of brake lining materials. Wear, 264, 291–297. https://doi.org/10.1016/j. wear.2007.03.018
  • Chopin, E. I., & Alloway, B. J. (2007). Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain. Science of the Total Environment, 373(2–3), 488–500. https://doi.org/10.1016/j.scitotenv.2006.11.037
  • Ettler, V., Johan, Z., Kříbek, B., Veselovský, F., Mihaljevič, M., Vaněk, A., Penížek, V., Majer, V., Sracek, O., Mapani, B., Kamona, F., & NyambeEttler, V., Petráňová, V., Vítková, M., Mihaljevič, M., Šebek, O., & Kříbek, B. (2016). Reactivity of fly ash from copper smelters in an Oxisol: Implications for smelter-polluted soil systems in the tropics. Journal of Soils Sediments, 16, 115–124. https://doi.org/10.1007/s11368-015-1174-7
  • Gałuszka, A., & Migaszewski, Z. M. (2018). Glass microspheres as a potential indicator of the Anthropocene: A first study in an urban environment. The Holocene, 28(2), 323–329. https://doi.org/10.1177/0959683617721332
  • Hao, H., Guo, R., Gu, Q., & Hu, X. (2019). Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data. Minerals Engineering, 143, 105899. https://doi.org/10.1016/j. mineng.2019.105899
  • Hołtra, A., & Zamorska-Wojdyła, D. (2020). The pollution indices of trace elements in soils and plants close to the copper and zinc smelting works in Poland’s Lower Silesia. Environmental Science and Pollution Research, 27(14), 16086–16099. https://doi.org/10.1007/ s11356-020-08072-0
  • Jagodziński, R., Sternal, B., Szczuciński, W., Chagué-Goff, C., & Sugawara, D. (2012). Heavy minerals in the 2011 Tohoku-oki tsunami deposits—insights into sediment sources and hydrodynamics. Sedimentary Geology, 282, 57–64. https://doi.org/10.1016/j. sedgeo.2012.07.015
  • Jarošíková, A., Ettler, V., Mihaljevič, M., Penížek, V., Matoušek, T., Culka, A., & Drahota, P. (2018). Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment. Environmental Pollution, 237, 83–92. https://doi. org/10.1016/j.envpol.2018.02.028
  • Kacem, I., Gautron, L., Coillot, D., & Neuville, D. R. (2017). Structure and properties of lead silicate glasses and melts. Chemical Geology, 461, 104–114. https://doi. org/10.1016/j.chemgeo.2017.03.030.hal-01632315
  • Karczewska, A., Kaszubkiewicz, J., Jezierski, P., Kabała, C., & Król, K. (2010). Level of soil contamination with copper, lead and cadmium within the protection zone of copper smelter Legnica in the years 1982 and 2005. Roczniki Gleboznawcze, 61, 45–51. (in Polish with English summary)
  • KGHM Cuprum Sp.z.o.o. Research Center. Monograph of KGHM Polish copper company; KGHM Cuprum Sp.z.o.o. Research Center: Wrocław, Poland, 2007. (In Polish).
  • Khan, R., Das, S., Kabir, S., Habib, Md. A., Naher, K., Islam, M. A., Tamim, U., Rahman, A. K. M. R., Deb, A. K., & Hossain, S. M. (2019). Evaluation of the elemental distribution in soil samples collected from ship-breaking areas and an adjacent island. Journal of Environmental Chemical Engineering, 7(3), 103189. https://doi.org/10.1016/j. jece.2019.103189
  • Lång, L. O. (2000). Heavy mineral weathering under acidic soil conditions. Applied Geochemistry, 15(4), 415–423. https://doi.org/10.1016/S0883-2927(99)00064-5
  • Lanteigne, S., Schindler, M., & McDonald, A. M. (2014). Distribution of metals and metalloids in smelterderived particulate matter in soils and mineralogical insights into their retention and release in a low-t environment. The Canadian Mineralogist, 52(3), 453–471. https://doi.org/10.3749/canmin.52.3.453
  • Lanteigne, S., Schindler, M., McDonald, A. M., Skeries, K., Abdu, Y., Mantha, N. M., Murayama, M., Hawthorne, F. C., & Hochella, Jr., M. F. (2012). Mineralogy and weathering of smelter-derived spherical particles in soils: Implications for the mobility of Ni and Cu in the surficial environment. Water, Air & Soil Pollution, 223, 3619–3641. https://doi.org/10.1007/s11270-012- 1135-3
  • Li, X., Wu, L., Zhou, J., Luo, Y., Zhou, T., Li, Z., Hu, P., & Christie, P. (2022). Potential environmental risk of natural particulate cadmium and zinc in sphaleriteand smithsonite-spiked soils. Journal of Hazardous Materials, 429, 128313, https://doi.org/10.1016/j. jhazmat.2022.128313
  • Lim, Y. C., Marolf, A., Estoppey, N., & Massonnet, G. (2021). A probabilistic approach towards source level inquiries for forensic soil examination based on mineral counts. Forensic Science International, 328, 111035. https:// doi.org/10.1016/j.forsciint.2021.111035
  • Lis, J., & Pasieczna, A. (2005). Anthropogenic soils pollution within the Legnica–Głogów copper district. Polish Geological Institute Special Papers, 17, 42–48.
  • Mange, M. A., & Wright, D. T. (Eds.). (2007a). Heavy minerals in use. Elsevier. eBook ISBN: 9780080548593
  • Mange, M. A., & Wright, D. T. (2007b). High-resolution heavy mineral analysis (HRHMA): A brief summary. Developments in Sedimentology, 58, 433–436. https:// doi.org/10.1016/S0070-4571(07)58016-7
  • Matelski, R. P., & Turk, L. M. (1947). Heavy minerals in some podzol soil profiles in Michigan. Soil Science, 64(6), 469–488.
  • Medyńska-Juraszek, A., & Kabała, C. (2012). Heavy metal pollution of forest soils affected by the copper industry. Journal of Elementology, 17, 441–451. https://doi. org/10.5601/jelem.2012.17.3.07
  • Migaszewski, Z. M., Gałuszka, A., Dołęgowska, S., & Michalik,A. (2022). Abundance and fate of glass microspheres in river sediments and roadside soils: Lessons from the Świętokrzyskie region case study (south-central Poland). Science of the Total Environment, 821, 153410. https://doi.org/10.1016/j.scitotenv.2022.153410
  • Morton, A. C. (1984). Stability of detrital heavy minerals in Tertiary Sandstones from the North Sea Basin. Clay Minerals, 19, 287–308.
  • Morton, A. C. (1985). Heavy minerals in provenance studies. In Provenance of arenites, G. G. Zuffa (Ed.). (pp. 249–277). Department of Earth Sciences, University of Calabria, Castiglione Cosentino Stazione, Cosenza, Italy: Springer Netherlands.
  • Pettijohn, F. J. (1941). Persistence of heavy minerals and geologic age. The Journal of Geology, 49, 610–625.
  • Pietranik, A., Kierczak, J., Tyszka, R., & Schulz, B. (2018). Understanding heterogeneity of a slag-derived weathered material: The role of automated SEM-EDS analyses. Minerals, 8, 513. https://doi.org/10.3390/ min8110513
  • Potysz, A., Kierczak, J., Pietranik, A., & Kądziołka, K. (2018). Mineralogical, geochemical, and leaching study of historical Cu-slags issued from processing of the Zechstein formation (Old Copper Basin, Southwestern Poland). Applied Geochemistry, 98, 22–35. https://doi. org/10.1016/j.apgeochem.2018.08.027
  • Razum, I., Rubinić, V., Miko, S., Ružičić, S., & Durn, G. (2023). Coherent provenance analysis of terra rossa from the northern Adriatic based on heavy mineral assemblages reveals the emerged Adriatic shelf as the main recurring source of siliciclastic material for their formation. Catena, 226, 107083. https://doi. org/10.1016/j.catena.2023.107083
  • Stojanowska, A., Rybak, J., Bożym, M., Olszowski, T., & Bihałowicz, J. S. (2020). Spider webs and lichens as bioindicators of heavy metals: A comparison study in the vicinity of a copper smelter (Poland). Sustainability, 12, 8066. https://doi.org/10.3390/su12198066
  • Strzelec, Ł., & Niedźwiecka, W. (2012). Stan środowiska naturalnego w rejonie oddziaływania hut miedzi. Medycyna Środowiskowa Environmental Medicine, 15, 21–31. (in Polish)
  • Sulieman, M. M., Ibrahim, I. S., Elfaki, J. T., & Dafa-Allah, M. S. (2015). Origin and distribution of heavy minerals in the surficial and subsurficial sediments of the alluvial Nile river terraces. Open Journal of Soil Science, 5, 299–310. https://doi.org/10.4236/ ojss.2015.512028
  • Tangari, A. C., Le Pera, E., Andò, S., Garzanti, E., Piluso, E., Marinangeli, L., & Scarciglia, F. (2021). Soilformation in the central Mediterranean: Insight from heavy minerals. Catena, 197, 104998. https://doi. org/10.1016/j.catena.2020.104998
  • Tørseth, K., Aas, W., Breivik, K., Fjaeraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., & Yttri, K. E. (2012). Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmospheric Chemistry and Physics, 12, 5447–5481. https://doi.org/10.5194/acp-12-5447-2012
  • Trzyna, A., Rybak, J., Bartz, W., & Górka, M. (2022). Health risk assessment in the vicinity of a copper smelter: Particulate matter collected on a spider web. Mineralogia, 53, 36–50. https://doi.org/10.2478/ mipo-2022-0004
  • Tuhý, M., Ettler, V., Rohovec, J., Matoušková, Š., Mihaljevič, M., Kříbek, B., & Mapani, B. (2021). Metal(loid)s remobilization and mineralogical transformations in smelter-polluted savanna soils under simulated wildfire conditions. Journal of Environmental Management, 293, 112899. https://doi.org/10.1016/j. jenvman.2021.112899
  • Tuhý, M., Hrstka, T., & Ettler, V. (2020). Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting-polluted soils. Environmental Pollution, 266, 115118. https://doi. org/10.1016/j.envpol.2020.115118
  • Tyszka, R., Kierczak, J., Pietranik, A., Ettler, V., & Mihaljevič, M. (2014). Extensive weathering of zinc smelting slag in a heap in Upper Silesia (Poland): Potential environmental risks posed by mechanical disturbance of slag deposits. Applied Geochemistry, 40, 70–81. https://doi.org/10.1016/j. apgeochem.2013.10.010
  • Tyszka, R., Pietranik, A., Kierczak, J., Ettler, V., Mihaljevič, M., & Medyńska-Juraszek, A. (2016). Lead isotopes and heavy minerals analyzed as tools to understand the distribution of lead and other potentially toxic elements in soils contaminated by Cu smelting (Legnica, Poland). Environmental Science and Pollution Research, 23, 24350–24363. https://doi.org/10.1007/ s11356-016-7655-4
  • Tyszka, R., Pietranik, A., Potysz, A., Kierczak, J., & Schultz, B. (2021). Experimental simulations of Zn-Pb slag weathering and its impact on the environment: Effects of acid rain, soil solution, and microbial activity. Journal of Geochemical Exploration, 228, 106808. https://doi. org/10.1016/j.gexplo.2021.106808
  • Waroszewski, J., Pietranik, A., Sprafke, T., Kabała, C., Frechen, M., Jary, Z., Kot, A., Tsukamoto, S., MeyerHeintz, S., Krawczyk, M., Łabaz, B., Schultz, B., & Erban-Kochergina, Y. V. (2021). Provenance and paleoenvironmental context of the Late Pleistocene thin aeolian silt mantles in southwestern Poland – A widespread parent material for soils. Catena, 204, 1–13. https://doi.org/10.1016/j.catena.2021.105377
  • Yu, X., Wang, Y., & Lu, S. (2020). Tracking the magnetic carriers of heavy metals in contaminated soils based on X-ray microprobe techniques and wavelet transformation. Journal of Hazardous Materials, 382, 121114. https:// doi.org/10.1016/j.jhazmat.2019.121114
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-135ff801-39e8-4fca-897f-0c3cfe41ee16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.