Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 2 | art. no. e98, 1--16
Tytuł artykułu

Effects of early‑age temperature and salt ion corrosion on the macroproperty deterioration of concrete and corresponding micromechanism

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper experimentally examines variations in the macroscopic properties of concrete under the interaction of early-age temperature and salt ion corrosion and investigates the microscopic mechanism of these variations from the perspective of pore structure and microcracks. The results show a prominent initial defect compaction stage of the compressive stress-strain curves of the specimens under the interaction of two factors, an increase in the number of pores and a high degree of crack development. Accordingly, the peak strength, secant elastic modulus and porosity of the specimens are greatly affected by the interaction between early-age temperature and salt ion corrosion, as reflected by the obvious deterioration trend. Based on a theoretical analysis, the concept of the initial defect strain ratio is proposed, the relationship between the total deformation and two indicators (initial defect deformation and matrix deformation) is clarified, and a constitutive model that reflects the initial defect compaction characteristics is established.
Wydawca

Rocznik
Strony
art. no. e98, 1--16
Opis fizyczny
Bibliogr. 54 poz., il., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Mining Response and Disaster, Anhui, China, xueweipei@aust.edu.cn
  • University of Science and Technology, Wuhu, Anhui, China
  • School of Civil Engineering and Architecture, University of Science and Technology, Huainan, China
autor
  • School of Civil Engineering and Architecture, University of Science and Technology, Huainan, China, 1617378462@qq.com
  • School of Civil Engineering and Architecture, University of Science and Technology, Huainan, China, 594702414@qq.com
autor
  • School of Civil Engineering and Architecture, University of Science and Technology, Huainan, China
Bibliografia
  • 1. Ngohpok C, Sata V, Satiennam T, Klungboonkrong P, Chindaprasirt P. Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates. Ksce J Civ Eng. 2017;22(4):1369-76. https://doi.org/10.1007/s12205-017-0144-6.
  • 2. Pauzi NNM, Jamil M, Hamid R, Abdin AZ, Zain MFM. Influence of spherical and crushed waste cathode-ray tube (CRT) glass on lead (Pb) leaching and mechanical properties of concrete. J Build Eng. 2019;21:421-428. https://doi.org/10.1016/j.jobe.2018.10.024.
  • 3. Iqrar H, Babar A, Tauqeer A, Muhammad Sohail J, Syed SR. Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Stud Constr Mater. 2020;13: e00429. https://doi.org/10.1016/j.cscm.2020.e00429.
  • 4. Jiang B, Qin Q, Wang Q, Li SH, Yu HC. Study on mechanical properties and influencing factors of confined concrete arch in underground engineering with complex conditions. Arab J Geosci. 2019;12(21):1-12. https://doi.org/10.1007/s12517-019-4786-1.
  • 5. Yao ZS, Xue WP, Cheng H, Ju XB, Qin Y. Research and application of composite shaft with inner steel plate and high strength reinforced concrete in frozen wellbore. J Min Saf Eng. 2018;35(4):5-11. https://doi.org/10.13545/j.cnki.jmse.2018.04.001.
  • 6. Guo KY, Wang JE. Failure mechanism and anti-deformation design of vertical shaft affected by coal mining. Coal Sci Technol. 2020;48(10):179-184. https://doi.org/10.13199/j.cnki.cst.2020.10.023.
  • 7. Zhang T, Yang WH, Chen GH, Huang JH, Han T, Zhang C. Monitoring and analysis of hydration heat temperature field for high performance mass concrete freezing shaft lining. J Min Saf Eng. 2016;33(2):290-296. https://doi.org/10.13545/2016.02.016.
  • 8. Zhang C. Measurement of cast-in-situ concrete temperature field of a new single-layer shaft lining in bed rock during freezing sinking. J Min Saf Eng. 2017;34(4):769-774. https://doi.org/10. 13545/j.cnki.jmse.2017.04.023.
  • 9. Zhao L, Liu JH, Ji HG. Performance improvement and mechanism of concrete with the addition of barium hydroxide reagent in typical sulfate environment. J China Coal Soc. 2017;42(7):1732-9. https://doi.org/10.13225/j.cnki.jccs.2016.1521.
  • 10. Qian ZW, Yang WH. Corrosion mechanism of the main shaft wall in the liuyuanzi coal mine and appropriate counter measures. Mine Water Environ. 2018;37(4):696-702. https://doi.org/ 10.1007/s10230-018-0520-6.
  • 11. Sidiq A, Gravina RJ, Setunge S, Giustozzi F. High-efciency techniques and micro-structural parameters to evaluate concrete self-healing using X-ray tomography and mercury intrusion porosimetry: a review. Constr Build Mater. 2020;223:119030. https://doi.org/10.1016/j.conbuildmat.2020.119030.
  • 12. Wang P, Mo R, Li S, Xu J, Jin ZQ, Zhao TJ, Wang DZ. A chemo-damage-transport model for chloride ions difusion in cement-based materials: combined effects of sulfate attack and temperature. Constr Build Mater. 2021;288: 123121. https://doi.org/10.1016/j.conbuildmat.2021.123121.
  • 13. Alhozaimy AM, Ahmed M, Hussain RR, Al-Negheimish A. Quantitative non-linear effect of high ambient temperature on chloride threshold value for steel reinforcement corrosion in concrete under extreme boundary conditions. Materials. 2021;14(24):7595. https://doi.org/10.3390/ma14247595.
  • 14. Li Y, Chen Y, Shao W, Zhang JH, Liao SM, Fernandez-Steeger TM. Service life prediction and lateral bearing capacity analysis of piles considering coupled corrosion-temperature deterioration processes. J Mar Sci Eng. 2021;9(6):614. https://doi.org/10.3390/ jmse9060614.
  • 15. Mahdavi M, Abolmaali A, Ghahremannejad M. The effects of pH and temperature on compressive strength of synthetic fiber-reinforced concrete cylinders exposed to sulfuric acid. Adv Civ Eng Mater. 2018;7:403-13. https://doi.org/10.1520/ACEM20180018.
  • 16. Khan MI, Mourad SM, Charif A. Utilization of supplementary cementitious materials in HPC: from rheology to pore structure. Ksce J Civ Eng. 2016;21(3):889-899. https://doi.org/10.1007/s12205-016-1781-x.
  • 17. Xue WP, Liu XY, Yao ZS, Cheng H, Li HP. Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete. Acta Materiae Compositae Sinica. 2020;37(09):2285-2293. https://doi.org/10.13801/j.cnki.fhclxb. 20200219.001.
  • 18. Matos LMP, Barros JAO, Ventura-Gouveia A, Rui ABC. Constitutive model for fibre reinforced concrete by coupling the fibre and aggregate interlock resisting mechanisms. Cement Concrete Comp. 2020;111:103618. https://doi.org/10.1016/j.cemconcomp. 2020.103618.
  • 19. Kongshaug SS, Larssen RM, Hendriks MAN, Kanstadc T, Marke seta G. Load effects in reinforced concrete beam bridges affected by alkali-silica reaction-constitutive modelling including expansion, cracking, creep and crushing. Eng Struct. 2021;245: 112945. https://doi.org/10.1016/j.engstruct.2021.112945.
  • 20. Yang DQ, Yan CW, Liu SG, Zhang J, Hu ZC. Stress-strain constitutive model of concrete corroded by saline soil under uniaxial compression. Constr Build Mater. 2019;213:665-674. https://doi. org/10.1016/jconbuildmat.2019.03.153.
  • 21. Liao KX, Zhang YP, Zhang WP, Wang Y, Zhang RL. Modeling constitutive relationship of sulfate-attacked concrete. Constr Build Mater. 2020;260: 119902. https://doi.org/10.1016/j.conbuildmat. 2020.119902.
  • 22. Zhang XY, Wu HJ, Li JZ, Pi AG, Huang GL. A constitutive model of concrete based on Ottosen yield criterion. Int J Solids Struct. 2020;193-194:79-89. https://doi.org/10.1016/j.ijsolstr.2020.02. 013.
  • 23. Li L, Wang HW, Wu J, Jiang WH. A thermomechanical coupling constitutive model of concrete including elastoplastic damage. Appl Sci. 2021;11(2):604. https://doi.org/10.3390/app11020604.
  • 24. Xue WP, Yao ZS, Wei J, Bin T, Gan K, Han W. Experimental study on permeability evolution during deformation and failure of shaft lining concrete. Constr Build Mater. 2019;195:564-573. https://doi.org/10.1016/j.conbuildmat.2018.11.101.
  • 25. Shi JY, Liu BJ, Shen S, Tan JX, Dai JD, Ji RJ. Effect of curing regime on long-term mechanical strength and transport properties of steam-cured concrete. Constr Build Mater. 2020;2020(255): 119407. https://doi.org/10.1016/j.conbuildmat.2020.119407.
  • 26. Xue WP, Liu XY, Jing W, Yao ZS, Gao C, Li HP. Experimental study and mechanism analysis of permeability sensitivity of mechanically damaged concrete to confining pressure. Cement Concrete Res. 2020;134: 106073. https://doi.org/10.1016/j.cemco nres.2020.106073.
  • 27. Fu Q, Bu M, Zhang ZR, He JQ, Li D, Xu WR, Niu DT. Chloride ion transport performance of lining concrete under coupling the action of flowing groundwater and loading. Cement Concrete Comp. 2021;123: 104166. https://doi.org/10.1016/j.cemconcomp. 2021.104166.
  • 28. Chang HL, Jin ZQ, Zhao TJ, Wang BZ, Li Z, Liu J. Capillary suction induced water absorption and chloride transport in non saturated concrete: the influence of humidity, mineral admixtures and sulfate ions. Constr Build Mater. 2020;236: 117581. https://doi.org/10.1016/j.conbuildmat.2019.117581.
  • 29. Matsumura T, Shirai K, Saegusa T. Verification method for durability of reinforced concrete structures subjected to salt attack under high temperature conditions. Nucl Eng Des. 2008;238(5):1181-8. https://doi.org/10.1016/j.nucengdes.2007.03.032.
  • 30. Chen DS, Deng Y, Shen JY, Sun GR, Shi J. Study on damage rules on concrete under corrosion of freeze-thaw and saline solution. Constr Build Mater. 2021;304: 124617. https://doi.org/10.1016/j.conbuildmat.2021.124617.
  • 31. Li SH, Yin SP, Wang LC, Hu XQ. Mechanical properties of eccentrically compressed columns strengthened with textile-reinforced concrete under the coupled action of chloride salt corrosion and loading. Appl Ocean Res. 2021;116: 102884. https://doi.org/10.1016/j.apor.2021.102884.
  • 32. Nie LX, Xu JY, Bai EL. Dynamic stress-strain relationship of concrete subjected to c00hloride and sulfate attack. Constr Build Mater. 2018;165:232-240. https://doi.org/10.1016/j.conbuildmat. 2018.01.044.
  • 33. Jia JF, Zhao LY, Wu SW, Wang X, Bai YL, Wei YJ. Experimental investigation on the seismic performance of low-level corroded and retrofitted reinforced concrete bridge columns with CFRP fabric. Eng Struct. 2018;209: 110225. https://doi.org/10.1016/j.engstruct.2020.110225.
  • 34. Bai WF, Zhang JH, Yan P, Wang XL. Study on vibration alleviating properties of glass fiber reinforced polymer concrete through orthogonal tests. Mater Design. 2009;30(4):1417-21. https://doi. org/10.1016/j.matdes.2008.06.028.
  • 35. Coronelli D, Gambarova P. Structural assessment of corroded reinforced concrete beams: modeling guidelines. J Struct Eng. 2004;130(8):1214-1224. https://doi.org/10.1061/(ASCE)0733- 9445(2004)130:8(1214).
  • 36. Shi JY, Liu BJ, Qin JL, Jiang JY, Wu X, Tan JX. Experimental study of performance of repair mortar: evaluation of in-situ tests and correlation analysis. J Build Eng. 2020;31(2020): 101325. https://doi.org/10.1016/j.jobe.2020.10132.
  • 37. Sabarish KV, Parvati TS. An experimental investigation on L9 orthogonal array with various concrete materials. Mater Today: Proc. 2021;37:3045-50. https://doi.org/10.1016/j.matpr.2020.09.005.
  • 38. Sabarish KV, Paul P. Optimizing the concrete materials by L9 orthogonal array. Mater Today: Proc. 2019;22:460-464. https://doi. org/10.1016/j.matpr.2019.07.720.
  • 39. Zhang JH, Wu ZY, Zhang YD, Fang Q, Yu HF, Jiang CL. Mesoscopic characteristics and macroscopic mechanical properties of coral aggregates. Constr Build Mater. 2021;309: 125125. https:/ doi.org/10.1016/j.conbuildmat.2021.125125.
  • 40. Howard JJ, Kenyon WE. Determination of pore size distribution in sedimentary rocks by proton nuclear magnetic resonance. Mar Petrol Geol. 1992;9(2):139-145. https://doi.org/10.1016/0264- 8172(92)90086-T.
  • 41. Li XZ, Lin BQ, Zhai C, Li ZW. Relaxation study of cement based grouting material using nuclear magnetic resonance. Int J Min Sci Techno. 2012;22(6):821-824. https://doi.org/10.1016/j.ijmst.2012. 12.005.
  • 42. Qiu SX, Yang M, Xu P, Rao BQ. A new fractal model for porous media based on low-feld nuclear magnetic resonance. J Hydrol. 2020;586: 124890. https://doi.org/10.1016/j.jhydrol.2020.124890.
  • 43. Du Y, Tang LY, Yang LJ, Wang X, Bai MM. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance. Chin J Geotech Eng. 2019;41(12):2316-22. https://doi.org/10.11779/CJGE201912017.
  • 44. Sadrmomtazi A, Lotf-Omran O, Nikbin IM. Influence of cement content and maximum aggregate size on the fracture parameters of magnetite concrete using WFM, SEM and BEM. Theor Appl Fract Mec. 2020;107:102482. https://doi.org/10.1016/j.tafmec.2020.102482.
  • 45. Makeev A, He Y, Carpentier P, Shonkwiler B. A method for measurement of multiple constitutive properties for composite materials. Compos Part A-Appl S. 2012;43(12):2199-210. https://doi.org/10.1016/j.compositesa.2012.07.021.
  • 46. Lian HD, Tian QQ, Xu CD, Gao YW. Experimental study on stress-strain of concrete damaged by early freezing. Bull Chin Ceram Soc. 2021;40(06):2026-33. https://doi.org/10.16552/j.cnki.issn1001-1625.20210507.002.
  • 47. Huang L, Wang XP, Zhang DS. Application research on damaged plasticity model of lightweight aggregate concrete under uniaxial stress. Build Struct. 2012;42(07):81-84+44. https://doi.org/10.19701/j.jzjg.2012.07.019.
  • 48. Ma KL, Huang XY, Hu MW, Peng LN, Zhang XQ. Damage constitutive model of brick-concrete recycled coarse aggregates concrete. J Build Mater. 2021; 1-15(2021-09-13): http://kns.cnki. net/kcms/detail/31.1764.TU.20210204.1719.059.html.
  • 49. Li XL, Chen HK, Zhang JH. A statistical damage model for rock full deformation process with considering the characteristics of initial void compaction. J Southwest Jiaotong Uni. in press. 2020; https://doi.org/10.3969/j.issn.0258-2724.20200220.
  • 50. Lemaitre JA. Continuous damage mechanics model for ductile fracture. J Eng Mater. 1985;107(1):83-89. https://doi.org/10. 1115/1.3225775.
  • 51. Muggele RA. A statistical distribution function of wide applicability. J Appl Mech. 1951;18(3):293-297. https://doi.org/10.1115/1.4010468.
  • 52. Rinaldi A, Krajcinovic D, Mastilovic S. Statistical damage mechanics and extreme value theory. Int J Damage Mech. 2007;16(1):57-76. https://doi.org/10.1177/1056789507060779. 53. Wang QF. Study on dynamic damage characteristics of steel fiber reinforced concrete. Master China three gorges university. 2009; Yichang, China. https://doi.org/10.7666/d.D066359.
  • 54. Wu B. Experimental study on complete stress-strain curve on concrete under uniaxial loading and stochastic damage constitutive model. Master. Xi’an university of architecture and technology. 2015; Xi’an, China. https://doi.org/10.7666/d.D714520.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1322113a-5cc4-4783-912d-5ee7f49758ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.