Warianty tytułu
Języki publikacji
Abstrakty
In connection with the rapidly growing market of reverse osmosis membrane elements, particularly those intended for use in commercial water treatment installations, the problem of their regeneration and reuse has become acute. Today, the service life of such elements does not exceed 6–12 months, after which they turn into plastic waste and end up in landfills in the amount of no less than 60.000 tons per year, which leads to the emergence of serious environmental problems. This paper proposes methods and conditions for achieving almost complete restoration of the properties of used commercial reverse osmosis membrane elements by means of their regeneration and modif ication. The possibility of using restored elements in vending machines for filling safe physiologically complete drinking water has been demonstrated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
322--333
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Chemical Technology Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Prospect Beresteiskyi, 37, 03056, Kyiv, Ukraine, temarr98@gmail.com
autor
- Chemical Technology Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Prospect Beresteiskyi, 37, 03056, Kyiv, Ukraine, ivanova.tatiana@lll.kpi.ua
autor
- Chemical Technology Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Prospect Beresteiskyi, 37, 03056, Kyiv, Ukraine, halkina.kateryna@lll.kpi.ua
autor
- Chemical Technology Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Prospect Beresteiskyi, 37, 03056, Kyiv, Ukraine, tmitchenko@ecosoft.com
autor
- Chemical Technology Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Prospect Beresteiskyi, 37, 03056, Kyiv, Ukraine, vasilyuk@gmail.com
autor
- Chemical Technology Faculty, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Prospect Beresteiskyi, 37, 03056, Kyiv, Ukraine, kosoginairyna@gmail.com
Bibliografia
- 1. Adel M. et al. 2022. Characterization of fouling for a full-scale seawater reverse osmosis plant on the Mediterranean sea: membrane autopsy and chemical cleaning efficiency. Groundw Sustain Dev. 16, 100704. doi: 10.1016/J.GSD.2021.100704.
- 2. Al-Naama A.-R. et al. 2016. Unaited Nations report. Chapter 28. Desalinization.
- 3. Antony A. et al. 2010. Assessing the oxidative degradation of polyamide reverse osmosis membrane— Accelerated ageing with hypochlorite exposure. J Memb Sci, 347(1–2), 159–164. doi: 10.1016/J.MEMSCI.2009.10.018.
- 4. Contreras-Martínez J. et al. 2021. Recycled reverse osmosis membranes for forward osmosis technology. Desalination, 519, 115312. doi: 10.1016/J.DESAL.2021.115312.
- 5. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. 2008. [Online]. Available: https://eur-lex.europa.eu/legal-content/ EN/TXT/?uri=celex%3A32008L0098
- 6. Driker Yu. 2023. Karte yakosti vody: zminy v umovakh viiny. Voda i vodoochysni tekhnolohii, 105–106 (1–2) (in Ukrainian).
- 7. DSTU ISO 6059:2003. 2003.Yakist vody. Vyznachannia sumarnoho vmistu kaltsiiu ta mahniiu. Tytrometrychnyi metod iz zastosovuvanniam etylendiamintetraotstovoi kysloty. (in Ukrainian).
- 8. DSTU ISO 6332:2003. 2004. Yakist vody. Vyznachennia zaliza. Spektrometrychnyi metod iz vykorystanniam 1,10-fenantrolin. (in Ukrainian).
- 9. DSTU ISO 8467:2021. 2021. Yakist vody. Vyznachennia permanhanatnoi okysniuvanosti. (in Ukrainian)
- 10. Ecosoft. 2023. TDS membranes Ecosoft. [Online]. (in Ukrainian) Available: https://ecosoft.ua/upload/ iblock/089/tds_membranes-ecosoft.pdf.
- 11. GOST 26449.1-85. 1987. Ustanovki distillyatsionnyie opresnitelnyie statsionarnyie. Metodyi himicheskogo analiza solenyih vod (in Ukrainian).
- 12. Grossi L.B. et al. 2024a. Transition pathway towards more sustainable waste management practices for end-of-life reverse osmosis membranes: Challenges and opportunities in Brazil. J Clean Prod, 435, 140571. doi: 10.1016/J.JCLEPRO.2024.140571.
- 13. Grossi L.B. et al. 2024b. Sustainability in reverse osmosis membranes waste management: Environmental and socioeconomic assessment. Desalination, 575,117338. doi: 10.1016/J.DESAL.2024.117338.
- 14. Gu J.E. et al. 2012. Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane. Water Res, 46(16), 5389–5400. doi: 10.1016/J.WATRES.2012.07.030.
- 15. Hailemariam R. H. et al. 2020. Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Adv Colloid Interface Sci, 276, 102100. doi: 10.1016/J.CIS.2019.102100.
- 16. Ismail A.F. et al. 2019. RO Membrane Fouling. Reverse Osmosis, 189–220. doi: 10.1016/B978-0-12-811468-1.00008-6.
- 17. Jafari M. et al. 2020. A comparison between chemical cleaning efficiency in lab-scale and full-scale reverse osmosis membranes: Role of extracellular polymeric substances (EPS). J Memb Sci, 609. doi: 10.1016/J.MEMSCI.2020.118189.
- 18. Karabelas A.J. et al. 2015. Modeling of spiral wound membrane desalination modules and plants – review and research priorities. Desalination, 356, 165–186. doi: 10.1016/J.DESAL.2014.10.002.
- 19. Lawler W. et al. 2012. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes. Desalination, 299, 103–112. doi: 10.1016/J.DESAL.2012.05.030.
- 20. Maeda Y. 2022. Roles of Sulfites in Reverse Osmosis (RO) Plants and Adverse Effects in RO Operation. Membranes (Basel), 12(2). doi: 10.3390/MEMBRANES12020170.
- 21. Ministerstvo Okhorony Zdorovia Ukrainy. 2010. Pro zatverdzhennia Derzhavnykh sanitarnykh norm ta pravyl «Hihienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu. #400. Accessed: Mar. 06, 2024. [Online]. (in Ukrainian). Available: https://zakon.rada.gov.ua/laws/show/z0452-10#Text
- 22. Mitchenko T. Ye. et al. 2021. Seriya vydan Svit suchasnoi vodopidhotovky: Metody i materialy. VUVT WaterNet, Kyiv (in Ukrainian).
- 23. Mudryk R. et al. 2023. Shared automatic drinking water treatment and dispensing systems and methods of their optimization. Water and water purification technologies. Scientific and technologies news. 35(1), 9–25. doi: 10.20535/2218-930012023281111.
- 24. Polaris market research. Reverse Osmosis (RO) Membrane Market Size Global Report, 2022–2030. 2021. Accessed: Mar. 06, 2024. [Online]. Available: https:// www.polarismarketresearch.com/industry-analysis/reverse-osmosis-membrane-market
- 25. Tyvonenko A. et al. 2022. Environmental problems caused by the use of reverse osmosis membrane elements, аnd ways to solve them. Water and water purification technologies. Scientific and technologies news, 32 (1), 33–42. doi: 10.20535/2218-930012022259491.
- 26. Tyvonenko A. et al. 2023a. Production of physiologically complete drinking water using modified reverse osmosis membrane elements. Eastern-European Journal of Enterprise Technologies, 2(10122), 6–13. doi: 10.15587/1729-4061.2023.277491.
- 27. Tyvonenko A. et al. 2023b. Otrymannia modyf ikovanykh zvorotnoosmotychnykh membrannykh elementiv iz zadanoiu selektyvnistiu. International Conference on Chemistry, Chemical Technology and Ecology, 227-229.
- 28. Voutchkov N. 2017. Diagnostics of Membrane Fouling and Scaling. Pretreatment for Reverse Osmosis Desalination, 43–64. doi: 10.1016/ B978-0-12-809953-7.00003-6.
- 29. Wang H. et al. 2023. Efficacies and mechanisms of different cleaning strategies for NF and RO membranes in a full-scale zero liquid discharge system. Journal of Water Process Engineering, 56, 104308. doi: 10.1016/J.JWPE.2023.104308.
- 30. Yang J.Y. et al. 2013. Research on refurbishing of the used RO membrane through chemical cleaning and repairing with a new system. Desalination, 320, 49–55. doi: 10.1016/J.DESAL.2013.04.008.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-13082271-0b5c-480e-9f69-c3e81f285c28