Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | R. 89, nr 11 | 51-54
Tytuł artykułu

Electroencephalogram classification methods

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Metody klasyfikacji elektroencefalogramu
Języki publikacji
EN
Abstrakty
EN
Today still big challenge in world to find efficient technique for perform recognition on mental tasks, and distinguish between them. This allow us to use Brain Computer Interface applications to helps disabled people to interaction with environment and control on external devices.
PL
Obecnie duze znacznie ma rozpoznawanie aktywności umysłowej dzięki analizie aktywności mózgu. W artykule omówiono interfejs komputer-mózg.
Wydawca

Rocznik
Strony
51-54
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Bhattacharya J., Petsche H., Universality in the brain while listening to music, Proc. the Royal Society Lond. B., 2001, No. 268, 2423-2433
  • [2] Ochoa J. B., Molina G. G., Ebrahimi T., EEG Signal Classification for Brain Computer Interface Applications, Ecole Polytechnique Federale De Lausanne, 2002
  • [3] Sanei S., Chambers J. A., EEG Signal Processing, 2007, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England
  • [4] Rutkowski T. M., Zdunek R., Cichocki A., Multichannel EEG brain activity pattern analysis in time-frequency domain with nonnegative matrix factorization support, International Congress Series, 2007, No. 1301, 266-269
  • [5] David Skillicorn., Understanding Complex Datasets. 2007 by Taylor and Francis Group, LLC 54 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 11/2013
  • [6] Weixiang L., Nanning Z., and Xi L., Nonnegative Matrix Factorization for EEG Signal Classification, Advances in Neural Networks - ISNN 2004, International Symposium on Neural Networks, Dalian, China, 2004, 470 – 475
  • [7] Lee H., Cichocki A., Choi S., Nonnegative Matrix Factorization for Motor Imagery EEG Classification, Artificial Neural Networks - ICANN 2006 16th International Conference, Athens, Greece, September 10-14, 2006, 250-259
  • [8] Lee H., Kim Y., Cichocki A., Choi 6S., Nonnegative Tensor Factorization for Continuous EEG Classification, International Journal of Neural Systems, Vol. 17, No. 4 (2007), 305-317
  • [9] Mingyu L., Hongbing J., Chunhong Z., Non negative Matrix Factorization and Its Application in EEG Signal Processing, Bioinformatics and Biomedical Engineering The 2nd International Conference, Xian, 2008, 2146-2148
  • [10] Lee H., Choi S., CUR+NMF for Learning Spectral Features from Large Data Matrix, Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference, Pohang, 1592-1597
  • [11] Lee H., Cichocki A., Choi S., Kernel nonnegative matrix factorization for spectral EEG feature extraction, 2009, 3182-3190
  • [12] Lee H., Choi S., Group Nonnegative Matrix Factorization for EEG Classification,12th International conference on Artificial and Statistics (AISTATS), Florida, 2009, 320-327
  • [13] Phan A. H., Cichocki A., Fast Nonnegative Tensor Factorization for Very Large-Scale Problems Using Two-Stage Procedure, Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2009 3rd IEEE International Workshop, 297-300
  • [14] Lee H., Yoo J., Choi S., Semi-Supervised Nonnegative Matrix Factorization, Signal Processing Letters, IEEE, 2010, 4-7
  • [15] Shin B., Oh A., Bayesian Group Nonnegative Matrix Factorization for EEG Analysis, CoRR dec 2012
  • [16] Dohnalek p., Gajdos p., Peterek t., Penhaker M., Pattern Recognition in EEG Cognitive Signals Accelerated by GPU, International Joint Conference CISIS'12-ICEUTE'12-SOCO'12 Special Sessions Advances in Intelligent Systems and Computing Volume 189, 2013, 477–485
  • [17] Abásolo D., Hornero, R., Gómez, C., García, M., López, M., Analysis of EEG background activity in Alzheimer's disease patients with Lempel-Ziv complexity and central tendency measure, Medical Engineering and Physics 28 (4) , 2006, 315-322
  • [18] Lempel A., Ziv J., On the complexity of finite sequences, IEEE TransInform Theory 1976, No. 22, 75–81
  • [19] Zhang X. S., Zhu Y.S., Thakor N.V., Wang Z.Z., Detecting ventricular tachycardia and fibrillation by complexity measure, IEEE Trans Biomed Eng 1999, No. 46, 548–55
  • [20] Radhakrishnan N., Gangadhar B. N., Estimating regularity in epileptic seizure time-series data. A complexity-measure approach, IEEE Eng Med Biol 1998, No. 17, 89–94
  • [21] Wu X., Xu J., Complexity and brain functions, Acta Biophys Sinica 1991, No. 7, 103–106
  • [22] Xu J., Liu Z. R., Liu R., Yang Q. F., Information transformation in human cerebral cortex, Physica D 1997, No. 106, 363–74
  • [23] Zhang X. S., Roy R. J., Jensen E. W., EEG complexity as a measure of depth of anesthesia for patients, IEEE Trans Biomed Eng 2001, No. 48, 1424–33
  • [24] Zhang X. S., Roy R. J., Derived fuzzy knowledge model for estimating the depth of anesthesia, IEEE Trans Biomed Eng 2001, No. 48, 312–23
  • [25] Huang L., Yu P., Ju F., Cheng J., Prediction of response to incision using the mutual information of electroencephalogram during anesthesia, Med Eng Phys 2003, No. 25, 321–327
  • [26] Prusinkiewicz P., Graphical applications of L-system, Graphical Interface, 1986, 247- 253
  • [27] Goldman R., Schaefer S., Ju T., Turtle geometry in computer graphics and computer-aided design, 2004, 1471–1482
  • [28] Jahan I. S., Prilepok M., Snasel V., EEG Data Similarity Using Lempel–Ziv Complexity, unpublished
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-12dbec41-71d8-4fcc-bc30-f175340f550d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.