Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | R. 80, nr 1-2 | 53--66
Tytuł artykułu

Rys historyczny oraz współczesne trendy zastosowania technologii klejenia w budownictwie

Warianty tytułu
EN
Historical outline and modern trends applications of adhesive bonding technology in civil engineering
Języki publikacji
PL
Abstrakty
PL
Celem artykułu jest przybliżenie współczesnych zastosowań połączeń klejonych w budownictwie, jak również wskazanie obecnych trendów w rozwoju technologii klejenia. Omówiono wybrane zagadnienia z tej tematyki w zakresie wznoszenia, wzmacniania i naprawy konstrukcji drewnianych, murowych, żelbetowych, stalowych i zespolonych.
EN
The aim of this article is to present modern applications of adhesive bonding in civil engineering and to point out current trends in the development of adhesive bonding technology. Chosen problems regarding this topic are discussed in the context of construction, strengthening and repair of timber, masonry, reinforced-concrete, metal and composite structures.
Wydawca

Rocznik
Strony
53--66
Opis fizyczny
Bibliogr. 53 poz., il., tab.
Twórcy
  • Politechnika Krakowska, Wydział Inżynierii Lądowej
  • Politechnika Krakowska, Wydział Inżynierii Lądowej
Bibliografia
  • [1] Piekarczyk M.: Zastosowanie technologii klejenia w metalowych konstrukcjach budowlanych. Wydawnictwo Politechniki Krakowskiej, Kraków 2013.
  • [2] Piekarczyk M.: Selected design problems of thin-walled steel members and connections in building Structures, Wydawnictwo Politechniki Krakowskiej, Kraków: 2018.
  • [3] Piekarczyk M.: Rozwój technologii klejenia konstrukcji metalowych, W: Szmigiera E., Wierzbicki S. (red): Aktualne problemy budownictwa metalowego, R. VII, s. 133-150. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2014.
  • [4] Śliwa-Wieczorek K., Szeptyński P. et al.: Creep Behavior of CLT Beams with Finite Thickness Layers of Flexible Adhesives, Materials, Tom 16, 2023, DOI: 10.3390/ma16124484.
  • [5] Pečnik J.G., Gavrić I. et. al.: Mechanical performance of timber connections made of thick flexible polyurethane adhesives, Engineering Structures, Tom 247, 2021, DOI: 10.1016/j.engstruct.2021.113125.
  • [6] Szeptyński P.: Comparison and experimental verification of simplified one-dimensional linear elastic models of multilayer sandwich beams, Composite Structures, Tom 241, 2020, DOI: 10.1016/j.compstruct.2020.112088.
  • [7] Kwiecień A., Derkowski W., Zając B.: Attempts to apply flexible adhesives in strengthening of bent RC beams with CFRP laminates, Conference on Civil Engineering Infrastructure Based on Polymer Composites, 2012, Kraków.
  • [8] Cruz J.R., Sena-Cruz J. et al.: Bond behaviour of NSM CFRP laminate strip systems in concrete using stiff and flexible adhesives, Composite Structures, Tom 245, 2020, DOI: 10.1016/j.compstruct.2020.112369.
  • [9] Cruz J.R., Saręga S. et al.: Flexural behaviour of NSM CFRP laminate strip systems in concrete using stiff and flexible adhesives, Composites Part B, Tom 195, 2020, DOI: 10.1016/j.compositesb.2020.108042.
  • [10] Kwiecień A., Kuboń P.: Dynamic analysis of damaged masonry building repaired with the flexible joint method, Archives of Civil Engineering, Tom 58, 2012, No. 1, DOI: 10.2478/v.10169-012-0003-2.
  • [11] Kwiecień A.: Highly Deformable Polymers for Repair and Strengthening of Cracked Masonry Structures, GSTF International Journal of Engineering Technology, Tom 2, 2013, No. 1, DOI: 10.5176/2251-3701_2.1.53.
  • [12] Kwiecień A.: Stiff and flexible adhesives bonding CFRP to masonry substrates - Investigated in pull-off test and Single-Lap test, Archives of Civil and Mechanical Engineering, Tom 12, 2012, DOI: 10.1016/j.acme.2012.03.015.
  • [13] Kwiecień A.: Shear bond of composites-to-brick applied with highly deformable, in relation to resin epoxy, interface materials, Materials and Structures, Tom 47, 2014, DOI: 10.1617/s11527-014-0363-y.
  • [14] Kwiecień A., de Felice G. et al.: Repair of composite-to-masonry bond using flexible matrix, Materials and Structures, Tom 49, 2016, DOI: 10.1617/s11527-015-0668-5.
  • [15] Kwiecień A., Krajewski P. et al.: Flexible Adhesive in Composite-to-Brick Strengthening - Experimental and Numerical Study, Polymers, Tom 10, 2018, DOI: 10.3390/polym10040356.
  • [16] Piekarczyk M.: Czy klejenie ma przyszłość? Konstrukcje stalowe, Nr 2(181), 2023.
  • [17] Szeptyński P.: Analityczne modelowanie cienkich sklein ścinanych quasi-statycznie. Wydawnictwo Politechniki Krakowskiej, Kraków: 2023.
  • [18] Mirski Z., Piwowarczyk T.: Podstawy klejenia, kleje i ich właściwości. Przegląd Spawalnictwa, Nr 8, 2008.
  • [19] Kwiecień K., Kwiecień A. et al.: Durability of PS-Polyurethane Dedicated for Composite Strengthening Applications in Masonry and Concrete Structures, Polymers, Tom 12, 2020, DOI: 10.3390/polym 12122830.
  • [20] Pasternak H., Ciupack Y.: Development of Eurocode-based design rules for adhesive bonded joints, International Journal of Adhesion & Adhesives, Tom 53, 2014, DOI: 10.1016/j.ijadhadh.2014.01.011.
  • [21] Schober K.U., Harte A.M. et al.: FRP reinforcement of timber structures, Construction and Building Materials, Tom 97, 2015, DOI: 10.1016/j.conbuildmat.2015.06.020.
  • [22] Broughton J.G., Hutchinson A.R.: Adhesive systems for structural connections in timber, International Journal of Adhesion & Adhesives, Tom 21, 2001, pp. 177-186.
  • [23] Schober K.U., Tannert T.: Hybrid connections for timber structures, European Journal of Wood and Wood Products, Tom 74, 2016, DOI: 10.1007/s001 07-016-1024-3.
  • [24] Schober K.U., Rautenstrauch K.: Post-strengthening of timber structures with CFRP's, Materials and Structures, Tom 40, 2006, DOI: 10.1617/s11527-006-9128-6.
  • [25] Angelidi M., Vassilopoulos A.P., Keller T.: Ductility of adhesively bonded timber joints, International Journal of Computational Methods and Experimental Measurements, Tom 5, 2017, No. 6, DOI: 10.2495/CMEM-V5-N6-917-927.
  • [26] Zając B.: Ścinane połączenia klejone sztywne i podatne pracujące w podwyższonej temperaturze. Wydawnictwo Politechniki Krakowskiej, Kraków 2018.
  • [27] Wang X., Hagman O. et al.: Impact of cold temperatures on the shear strength of Norway spruce joints glued with different adhesives, European Journal of Wood and Wood Products, Tom 73, 2015, DOI: 10.1007/s00107-015-0882-4.
  • [28] Stepinac M., Hunger F. et al.: CIB-W18/46-7-10: Comparison of design rules for glued-in rods and design rule proposal for implementation in European standards, Report of the Working Commission W18 - Timber Structures, International Council For Research And Innovation In Building And Construction, Vancouver, 2013.
  • [29] Tłustochowicz G., Serrano E., Steiger R.: State-of-the-art review on timber connections with glued-in steel rods, Materials and Structures, Tom 44, 2011, DOI: 10.1617/s11527-010-9682-9.
  • [30] Smardzewski J.: Strength of profile-adhesive joints, Wood Science and Technology, Tom 36, 2002, DOI: 10.1007/s00226-001-0131-3.
  • [31] Vallée T., Tannert T. et al.: Dimensioning method for bolted, adhesively bonded, and hybrid joints involving Fibre-Reinforced-Polymers, Composites: Part B, Tom 46, 2013, 10.1016/j.compositesb.2012.09.074.
  • [32] Li D.: Layerwise Theories of Laminated Composite Structures and Their Applications: A Review, Archives of Computational Methods in Engineering, Tom 28, 2021, DOI:10.1007/s11831-019-09392-2.
  • [33] Abrate S., di Sciuva M.: Equivalent single layer theories for composite and sandwich structures: A review, Composite Structures, Tom 179, 2017, DOI: 10.1016/j.compstruct.2017.07.090.
  • [34] Szeptyński P.: Closed-form analytical solution to the problem of bending of a multilayer composite beam - Derivation and verification, Composite Structures, Tom 291, 2022, DOI: 10.1016/j.compstruct.2022.115611.
  • [35] Babatunde S.A.: Review of strengthening techniques for masonry using fiber reinforced polymers, Composite Structures, Tom 161, 2017, DOI: 10.1016/j.compstruct.2016.10.132.
  • [36] Rousakis T., Iiki A. et al.: Deformable Polyurethane Joints and Fibre Grids for Resilient Seismic Performance of Reinforced Concrete Frames with Orthoblock Brick Infills, Polymers, Tom 12, 2020, No 2869, DOI: 10.3390/polym12122869.
  • [37] Foti D., Lerna M., Vacca V.: Experimental Characterization of Traditional Mortars and Polyurethane Foams in Masonry Wall, Advances in Materials Science and Engineering, 2018, DOI: 10.1155/20 18/8640351 .
  • [38] Ramirez R., Muñoz R, Lourenço P.B.: On Mechanical Behavior of Metal Anchors in Historical Brick Masonry: Testing and Analytical Validation, Applied Sciences, Tom 13, 2023, DOI: 10.3390/app13063999.
  • [39] Cattaneo S., Vafa N.: Tensile Capacity of Adhesive Anchors in Damaged Masonry, Applied Sciences, Tom 11, 2021, DOI: 10.3390/app112110135.
  • [40] Szeptyński P., Nowak M.: Qualitative analysis of the influence of the non-linear material characteristics of flexible adhesive on the performance of lap joints, Composite Structures, Tom 260, 2021, DOI: 10.1016/j.compstruct.2020.113539.
  • [41] Modesti L.A., de Vargas A.S., Schneider E.L.: Repairing concrete with epoxy adhesives, International Journal of Adhesion and Adhesives, Tom 101, 2020, DOI: 10.1016/j.ijadhadh.2020.102645.
  • [42] Rashid K., Ahmad M.: Experimental investigation of the bond strength between new to old concrete using different adhesive layers, Construction and Building Materials, Tom 249, 2020, DOI: 10.1016/j.conbuildmat.2020.118798.
  • [43] Dry C., Corsaw M.: A comparison of bending strength between adhesive and steel reinforced concrete with steel only reinforced concrete, Cement and Concrete Research, Tom 33, 2003, DOI: 10.1016/S0008-8846(03)00102-9.
  • [44] de Waal L., Fernando O. et al.: FRP strengthening of 60 year old pre-stressed concrete bridge deck units, Engineering Structures, Tom 143, 2017, DOI: 10.1016/j.engstruct.2017.03.062.
  • [45] Stöcklin I., Meier U.: Strengthening of Concrete Structures with Prestressed and Gradually Anchored CFRP strips, Proceedings of the Fifth International Conference on Fibre-Reinforced Plastics for Reinforced Concrete Structures (FRPRCS-5), Cambridge, UK, 16-18 July 2001.
  • [46] Dilger K., Feldman M. et al.: Forschung für die Praxis P654, Neue Konstruktionen durch Einsatz von Klebverbindungen im Stahlbau, FOSTA, Düseldorf 2008.
  • [47] Peiris A., Harik I.: Field Testing of Steel Bridge Girders Strengthened Using High Modulus (UHM) Carbon Fiber Reinforced Polymer (CFRP) Laminates, Conference Proceedings of the 6th International Conference on FRP Composites in Civil Engineering, 13-15 June 2012, Rome.
  • [48] Baek S.Y., Song Y.J. et al.: Bending Performance of Cross-laminated Timber-concrete Composite Slabs According to the Composite Method, BioResources, Tom 16, 2021, No. 4, pp. 8227-8238.
  • [49] Kanócz J., Bajzecerová V.: Timber - concrete composite elements with various composite connections. Part 3: adhesive connection, Wood Research, Tom 60, 2015, No. 6, pp. 939-952.
  • [50] Schäfers M., Seim W.: Investigation on bonding between timber and ultra-high performance concrete (UHPC), Construction and Building Materials, Tom 25, 2011, DOI: 10.1016/j.conbuildmat.2010.12.060.
  • [51] Eisenhut L., Seim W., Kühlborn S.: Adhesive-bonded timber-concrete composites - Experimental and numerical investigation of hygrothermal effects, Engineering Structures, Tom 125, 2016, DOI: 10.1016/j.engstruct.2016.05.056.
  • [52] Giv A.N., Fu Q. et al.: The effect of adhesive amount and type on failure mode and shear strength of glued timber-concrete joints, Construction and Building Materials, Tom 345, 2022, DOI: 10.1016/j.conbuildmat.2022.128375.
  • [53] Kumar P., Patnaik A., Chaudhary S.: A review on application of structural adhesives in concrete and steel-concrete composite and factors influencing the performance of composite connections, International Journal of Adhesion and Adhesives, Tom 77, 2017, DOI: 10.1016/j.ijadhadh.2017.03.009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-126e15ef-1516-43b0-b6e3-aa3f7add16ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.