Warianty tytułu
Języki publikacji
Abstrakty
In the semi-arid region of Ain Ouassera, Algeria, groundwater from the lower cretaceous aquifer (LC) serves as an essential resource for drinking and various other requirements. This study focuses on evaluating the suitability of water for domestic use and examining the non-carcinogenic health risks associated with consuming water containing high levels of nitrates. To explore these dimensions, the research utilizes the water quality index (WQI) method and the health risk assessment (HRA) model as formulated by the USEPA. The findings categorized the groundwater quality predominantly as “poor” for consumption purposes, with nitrate concentrations ranging from 14 to 112 mg/L, where 40% of the samples exceeded the World Health Organization’s (WHO) permissible limit (> 50 mg/L). Furthermore, the health risk analysis indicated that 76.67% of the samples for children and 70% for adults surpass the safety thresholds (QH > 1), signifying a significant risk to the local population. The study also uncovered that the hydrochemical characteristics of the groundwater reflect a mixed composition (CaMgCl) and that mineralization is mainly attributed to the dissolution of carbonates, sulfates, and halite, alongside inverse ion exchange processes and anthropogenic influences. These findings underscore the urgent need for improved groundwater management measures and risk mitigation strategies in the Ain Ouassera region.
Rocznik
Tom
Strony
220--233
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- Sahara Geology Laboratory. Department of Earth and Universe Sciences, University of Ouargla, Ouargla, Algeria, houarimenad22@gmail.com
autor
- Laboratory of Underground Oil, Gas and Aquifer Reservoirs, Department of Earth and Universe Sciences, University of Kasdi Merbah, Route de Ghardaïa, Ouargla, Algeria, bousboualem@gmail.com
autor
- Laboratory of Underground Oil, Gas and Aquifer Reservoirs, Department of Earth and Universe Sciences, University of Kasdi Merbah, Route de Ghardaïa, Ouargla, Algeria, lakhdarisara23@gmail.com
Bibliografia
- 1. Abbasnia A., Alimohammadi M., Mahvi A.H., Nabizadeh R., Yousefi M., Mohammadi A.A., Pasalari H., Mirzabeigi M. 2018. Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran. Data Brief 16, 182–192. https://doi.org/10.1016/j.dib.2017.11.003
- 2. Adimalla N. 2021. Application of the entropyweighted water quality index (EWQI) and the pollution index of groundwater (PIG) to assess groundwater quality for drinking purposes: a case study in a rural area of Telangana State, India. Arch. Environ. Contam. Toxicol. (1), 31–40. https://doi.org/10.1007/s00244-020-00800-4
- 3. Adimalla N., Qian H. 2019. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicol Environ Saf 176, 153–161. https://doi.org/10.1016/j.ecoenv.2019.03.066
- 4. ANRH. 2013. Les grandes occupations de sol dans la région de Djelfa. Agence Nationale des Ressources Hydrauliques de Djelfa, ANRH Djelfa.
- 5. ANRH. 2014. Inventaire des forages et données piézométriques de la Wilaya de Djelfa. Agence Nationale des Ressources Hydraulique.Djelfa, Algérie.
- 6. Arfa A., Bouselsal B., Zeddouri A., Kebili M. 2022. Groundwater Geochemical and Quality of the Continental Intercalary Aquifer in Béni Ounif (Southwest Algeria). Journal of Ecological Engineering 23(9), 1–12. https://doi.org/10.12911/22998993/151070
- 7. Azhdarpoor A., Radfard M., Pakdel M., Abbasnia A., Badeenezhad A., Mohammadi A.A., Yousefi M. 2019. Assessing fluoride and nitrate contaminants in drinking water resources and their health risk assessment in a semiarid region of southwest Iran. Desalination Water Treat. 149, 43–51. https://doi.org/10.5004/dwt.2019.23865, 2019
- 8. Azlaoui M., Zeddouri A., Haied N., Nezli I.E., Foufou A. 2021. Assessment and Mapping of Groundwater Quality for Irrigation and Drinking in a Semi-Arid Area in Algeria. Journal of Ecological Engineering 2021, 22(8), 19–32. https://doi.org/10.12911/22998993/140369
- 9. Azlaoui M., Nezli I.E., Foufou A., Haied N. 2017. Hydrodynamic Modeling of the Albian Aquifer of the Plain of Ain Oussera (Semi-Arid Area, Algeria). Energy Procedia 119, 242–255.
- 10. Bouselsal B., Saibi S. 2022. Evaluation of Groundwater Quality and Hydrochemical Characteristics in the Shallow Aquifer of El-Oued Region (Algerian Sahara). Groundwater for Sustainable Development, 17, 100747. https://doi.org/10.1016/j.gsd.2022.100747
- 11. Bouselsal B., Belksier M.S. 2018. Caractérisation géochimique de l’aquifère de Complexe Terminal de El-Oued (SE Algérie). Journal International Sciences et Technique de l’Eau et de l’Environnement. 3(1), 74–80.
- 12. Bouselsal B. 2016. Etude hydrogéologique et hydrochimique de l’aquifère libre d’El Oued Souf (SE Algérie). Thèse de Doctorat, Université d’Annaba, 204.
- 13. Boussaada N., Bouselsal B., Benhamida S.A., Hammad N., Kharroubi M. 2023. Geochemistry and water quality assessment of continental intercalary aquifer in Ouargla region (Sahara, Algeria). Journal of Ecological Engineering 24(2), 279–294. https://doi.org/10.12911/22998993/156832
- 14. Das R., Subba Rao N., Sahoo H.K., Sakram G. 2023. Nitrate Contamination in Groundwater and Its Health Implications in a Semi-Urban Region of Titrol Block, Jagatsinghpur District, Odisha, India. Physics and Chemistry of the Earth 132 (June): 103424. https://doi.org/10.1016/j.pce.2023.103424
- 15. Egbueri J.C. 2019. Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): A case study. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2019.100292
- 16. Farhat S., Bali M., Kamel F. 2019. Geochemical and Statistical Studies of Mio-Pliocene Aquifer’s Mineralization in Jerba Island, South-Eastern Tunisia. Physics and Chemistry of the Earth 111, 35–52. https://doi.org/10.1016/j.pce.2019.03.006
- 17. Hammad N., Bouselsal B., Boussaada N., Satouh A., Lakhdari A.S. 2023. Application of Water Quality Index to Assess the Potability of the Phreatic Aquifer in Ouargla (Algeria). Ecological Engineering and Environmental Technology 24(5), 36–45. https://doi.org/10.12912/27197050/163122
- 18. Hao C., Jiading W., Fei Z., Yaxing Z., Chunying X. 2022. Hydrochemical Characteristics and Formation Mechanisms of Groundwater in West Zoucheng City, Shandong Province, China. Environmental Monitoring and Assessment, 1–17. https://doi.org/10.1007/s10661-022-10136-2
- 19. Hao Q., Yong X., Kang C., Zhu Y. 2020. Comprehensive understanding of groundwater geochemistry and suitability for sustainable drinking purposes in confined aquifers of the Wuyi Region, Central North China Plain. Water 12(11), 3052. https://doi.org/10.3390/w12113052
- 20. Horton R.K. 1965. An index number system for rating water quality. Journal Water Pollution Control Federation. 37, 300–305.
- 21. Karmakar B., Singh M.K., Choudhary B.K., Singh S.K., Egbueri J.C., Gautam S., Rawat S.K. 2021. Investigation of the hydrogeochemistry, groundwater quality and associated health risks in industrialized regions of Tripura, northeast India. Environmental Forensics. https://doi.org/10.1080/15275922.2021.2006363
- 22. Karunanidhi D., Aravinthasamy P., Subramani T., Kumar M. 2020. Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: a case study from Texvalley (Tiruppur region) of India. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.129083
- 23. Kaur L., Rishi M.S., Siddiqui A.U. 2020. Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat Haryana, India. Environmental Pollution 259, 113711. https://doi.org/10.1007/s10653-023-01482-2
- 24. Kebili M., Bouselsal B., Gouaidia L. 2021. Hydrochemical Characterization and Water Quality of the Continental Intercalary Aquifer in the Ghardaïa Region (Algerian Sahara). Journal of Ecological Engineering 22(10), 152–162. https://doi.org/10.12911/22998993/142041
- 25. Kharroubi M., Bouselsal B., Sudhir K.S. 2024. Groundwater quality and non-carcinogenic element health risks assessment using multi-technical models: A case of the deep aquifer of the complex terminal in Ouargla city (southeastern Algeria). Groundwater for Sustainable Development 25, 101140. https://doi.org/10.1016/j.gsd.2024.101140
- 26. Kharroubi M., Bouselsal B., Ouarekh M., Benaabidate L., Khadri R. 2022. Water quality assessment and hydrogeochemical characterization of the ouargla complex terminal aquifer (Algerian Sahara). Arabian Journal of Geosciences 1–24. https://doi.org/10.1007/s12517-022-09438-z
- 27. Kumar D., Singh A., Jha R.K., Sahoo B.B., Sahoo S.K., Jha V. 2019. Source characterization and human health risk assessment of nitrate in groundwater of middle Gangetic Plain, India. Arab J Geosci 12, 339. https://doi.org/10.1007/s12517-019-4519-5
- 28. Mahanty B., Lhamo P., Sahoo N.K., Monte Carlo. 2023. Science of the Total Environment Inconsistency of PCA-Based Water Quality Index – Does It Reflect the Quality? Science of the Total Environment 866, 161353. https://doi.org/10.1016/j.scitotenv.2022.161353
- 29. Misaghi F., Delgosha F., Razzaghmanesh M., Myers B. 2017. Introducing a water quality index for assessing water for irrigation purposes: a case study of the Ghezel Ozan River. Sci Total Environ 589, 107–116.
- 30. Mudgal K.D., Kumari M., Sharma D.K. 2009. Hydrochemical analysis of drinking water quality of Alwar District, Rajasthan. Nat Sci 7(2), 30–39.
- 31. Ouarekh M., Bouselsal B., Belksier M.S., Benaabidate L. 2021. Water quality assessment and hydrogeochemical characterization of the Complex Terminal aquifer in Souf valley, Algeria. Arabian J. Geosci., 14, 2239. https://doi.org/10.1007/s12517-021-08498-x
- 32. Piper A.M. 1944. Graphical interpretation of water analysis, Transactions of the American Geophysical Union 25, 914 –923.
- 33. Satouh A., Bouselsal B., Chellat S., Benaabidate L. 2021. Determination of groundwater vulnerability using the DRASTIC method in ouargla shallow aquifer (Algerian Sahara). Journal of Ecological Engineering, 22(6), 1–8. https://doi.org/10.12911/22998993/137680
- 34. Sawyer G.N., McMcartly D.L. 1967. Chemistry for sanitary engineers (2nd ed., p. 518). New York: McGraw Hill.
- 35. Schoeller H. 1965. Qualitative Evaluation of Groundwater Resources. In: Methods and Techniques of Groundwater Investigations and Development; UNESCO: Paris, France, 5483.
- 36. Shaikh H., Gaikwad H., Kadam A. 2020. Hydrogeochemical Characterization of Groundwater from Semiarid Region of Western India for Drinking and Agricultural Purposes with Special Reference to Water Quality Index and Potential Health Risks Assessment. Applied Water Science 10, 204. https://doi.org/10.1007/s13201-020-01287-z
- 37. Tiwari A.K., Kumar S.A., Kumar S.A., Singh M.P. 2017. Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh, India. Appl Water Sci., 7, 1609–1623. https://doi.org/10.1007/s13201-015-0313-z
- 38. Tiwari A.K., Singh P.K., Mahato M.K. 2014. GISbased evaluation of water quality index of groundwater resources in West Bokaro coalfield. India Curr World Environ 9(3), 843–850.
- 39. Touahri M., Belksier M.S., Bouselsal B., Kebili M. 2022. Groundwater Quality Assessment of Hassi Messaoud Region (Algerian Sahara). Journal of Ecological Engineering 2022, 23(11), 165–178. https://doi.org/10.12911/22998993/153396
- 40. USEPA. 1989. Risk assessment guidance for superfund, volume 1: human health evaluation manual (part A) (EPA/540/1–89/002: interim final). Washington DC: Office of Emergency and Remedial Response.
- 41. USEPA. 2013. Basic Information about Nitrate in Drinking Water.
- 42. USEPA. 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors-OSWER Directive 9200, 6, 1–120.
- 43. WHO. 2017. World Health Statistics 2017: Monitoring Health for the SDGs, Sustainable Development Goals. Geneva: World Health Organization; License: CC BY-NC-SA 3.0 IGO.
- 44. Xiao Y., Dian X., Qichen H., Kui L., Rui W., Xun H., Xin L., Yunhui Z. 2021. Accessible Phreatic Groundwater Resources in the Central Shijiazhuang of North China Plain: Perspective from the Hydrogeochemical Constraints. Frontiers in Environmental Science 9, 1–16. https://doi.org/10.3389/fenvs.2021.747097
- 45. Zhang X.Y., Trame M., Lesko L., Schmidt S. 2015. Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models. CPT Pharmacometrics Syst. Pharmacol. 4, 69–79.
- 46. Zhang Y., He Z., Tian H., Xun H., Zhixiong Z., Yang L., Yong X., Rui L. 2021. Hydrochemistry appraisal, quality assessment and health risk evaluation of shallow groundwater in the Mianyang area of Sichuan Basin, southwestern China. Environ Earth Sci. 80, 576. https://doi.org/10.1007/s12665-021-09894-y
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-122f73cc-0cf4-45dc-aa34-d912af5ef023