Czasopismo
2024
|
Vol. 32, No. 1
|
art. no. e148249
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Growing energy demands are expected to render existing energy resources insufficient. Solar energy faces challenges in terms of providing continuous and reliable power supply to consumers. However, it has become increasingly important to implement renewable energy (RE) and energy management (EM) systems to increase the supply of power, improve efficiency, and maintain the stability of energy systems. As such, this present study integrated energy storage (ES) devices; namely, batteries and direct current (DC) to DC converters; into energy systems that support battery operation and effectively manage power flow, especially during peak load demands. The proposed system also addresses low solar irradiation and sudden load change scenarios by enabling the battery to operate in a discharge state to supply power to the load. Conversely, when the demand matches or exceeds the available solar energy, the battery is charged using solar power. The proposed system highlights the significance of RE systems and EM strategies in meeting growing energy demands and ensuring a reliable supply of power during solar variability and fluctuating loads. A MATLAB® Simulink model was used to evaluate the integration of a 200 kW photovoltaic (PV) array with a 380 V grid and 150 kW battery. The loads, consisting of a 100 kW and a 150 kW unit, were parallel connected. The results indicated that boost and three-phase (3Ph) inverters can be used to successfully integrate PV systems to the power grid to supply alternating current (AC) power. The inclusion of a battery also addressed power shortages during periods of insufficient power generation and to store surplus power.
Czasopismo
Rocznik
Tom
Strony
art. no. e148249
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia, baqersaleh73@gmail.com
autor
- Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
autor
- Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
autor
- Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
autor
- Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
Bibliografia
- [1] Dhar, R. K., Merabet, A., Al-Durra, A. & Ghias, A. M. Y. M. Power balance modes and dynamic grid power flow in solar PV and battery storage experimental DC-link microgrid. IEEE Access 8, 219847-219858 (2020). https://doi.org/10.1109/ACCESS.2020.3042536.
- [2] Guerrero-Lemus, R., Cañadillas-Ramallo, D., Reindl, T. & Valle-Feijóo, J. M. A simple big data methodology and analysis of the specific yield of all PV power plants in a power system over a long time period. Renew. Sust. Energ. Rev. 107, 123-132 (2019). https://doi.org/10.1016/j.rser.2019.02.033.
- [3] Saidi, A. S. Impact of large photovoltaic power penetration on the voltage regulation and dynamic performance of the Tunisian power system. Energy Explor. Exploit. 38, 1774-1809 (2020). https://doi.org/10.1177/0144598720940864.
- [4] Ali, S., Khan, I., Jan, S., & Hafeez, G. An optimization-based power usage scheduling strategy using photovoltaic-battery system for demand-side management in smart grid. Energies 14, 2201 (2021). https://doi.org/10.3390/en14082201.
- [5] Kumar, K. R. & Kalavathi, M. S. Power management of grid con-nected hybrid PV/wind/battery power system. Int. J. Eng. Technol. 7, 739-743 (2018). https://doi.org/10.14419/ijet.v7i4.28.28353.
- [6] Yi, Z., Dong, W. & Etemadi, A. H. A unified control and power management scheme for PV-battery-based hybrid microgrids for both grid-connected and islanded modes. IEEE Trans. Smart Grid 9, 5975-5985 (2018). https://doi.org/10.1109/TSG.2017.2700332.
- [7] Harsh, P. & Das, D. Energy management in microgrid using incentive-based demand response and reconfigured network considering uncertainties in renewable energy sources. Sustain. Energy Technol. Assess. 46, 101225 (2021). https://doi.org/10.1016/j.seta.2021.101225.
- [8] Joglekar, J. J. Power and Energy Management in Microgrid. in Microgrid Technologies (Eds. Sharmeela, C., Sivaraman, P., Sanjeevikumar, P. & Bo Holm-Nielsen, J.) 25-56 (John Wiley & Sons, Ltd, 2021). https://doi.org/10.1002/9781119710905.
- [9] Roy, K. Optimal energy management of micro grid connected system: A hybrid approach. Int. J. Energy Res. 45, 12758-12772 (2021). https://doi.org/10.1002/er.6609.
- [10] Kermani, M. et al. Intelligent energy management based on SCADA system in a real microgrid for smart building applications. Renew. Energy 171, 1115-1127 (2021). https://doi.org/10.1016/j.renene.2021.03.008.
- [11] Talebi, P. & Hejri, M. Distributed control of a grid-connected PV-battery system for constant power generation. J. Energy Manag. Technol. 3, 14-29 (2019). https://doi.org/10.22109/jemt.2019.164589.1145.
- [12] Hossain, M. A., Chakrabortty, R. K., Ryan, M. J. & Pota, H. R. Energy management of community energy storage in grid-connected microgrid under uncertain real-time prices. Sustain. Cities Soc. 66, 102658 (2021). https://doi.org/10.1016/j.scs.2020.102658.
- [13] Hasankhani, A. & Hakimi, S. M. Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market. Energy 219, 119668 (2021). https://doi.org/10.1016/j.energy.2020.119668.
- [14] Rangu, S. K., Lolla, P. R., Dhenuvakonda, K. R., & Singh, A. R. Recent trends in power management strategies for optimal operation of distributed energy resources in microgrids: A comprehensive review. Int. J. Energy Res. 44, 9889-9911 (2020). https://doi.org/10.1002/er.5649.
- [15] Anh, H. P. H. & Van Kien, C. Optimal energy management of microgrid using advanced multi-objective particle swarm optimization. Eng. Comput. 37, 2085-2110 (2020). https://doi.org/10.1108/EC-05-2019-0194.
- [16] Tazvinga, H., Zhu, B. & Xia, X. Optimal power flow management for distributed energy resources with batteries. Energy Convers. Manag. 102, 104-110 (2015). https://doi.org/10.1016/j.enconman.2015.01.015.
- [17] Kim, H. J., Kim, M. K. & Lee, J. W. A two-stage stochastic p-robust optimal energy trading management in microgrid operation considering uncertainty with hybrid demand response. Int. J. Electr. Power Energy Syst. 124, 106422 (2021). https://doi.org/10.1016/j.ijepes.2020.106422.
- [18] Karavas, C.-S., Arvanitis, K. G., Kyriakarakos, G., Piromalis, D. D. & Papadakis, G. A novel autonomous PV powered desalination system based on a DC microgrid concept incorporating short-term energy storage. Sol. Energy 159, 947-961 (2018). https://doi.org/10.1016/j.solener.2017.11.057.
- [19] Marzal, S., González-Medina, R., Salas-Puente, R., Garcerá, G., & Figueres, E. An embedded internet of energy communication platform for the future smart microgrids management. IEEE Internet Things J. 6, 7241-7252 (2019). https://doi.org/10.1109/JIOT.2019.2915389.
- [20] Hamad, A. A., Nassar, M. E., El-Saadany, E. F. & Salama, M. M. A. Optimal configuration of isolated hybrid AC/DC microgrids. IEEE Trans. Smart Grid 10, 2789-2798 (2019). https://doi.org/10.1109/TSG.2018.2810310.
- [21] Kofinas, P., Dounis, A. I. & Vouros, G. A. Fuzzy Q-learning for multi-agent decentralized energy management in microgrids. Appl. Energy 219, 53-67 (2018). https://doi.org/10.1016/j.apenergy.2018.03.017.
- [22] Yang, F., Feng, X. & Li, Z. Advanced microgrid energy management system for future sustainable and resilient power grid. IEEE Trans. Ind. Appl. 55, 7251-7260 (2019). https://doi.org/10.1109/TIA.2019.2912133.
- [23] Luo, F., Ranzi, G., Wang, S. & Dong, Z. Y. Hierarchical energy management system for home microgrids. IEEE Trans. Smart Grid 10, 5536-5546 (2019). https://doi.org/10.1109/TSG.2018.2884323.
- [24] Liu, J., Zhang, L. & Cao, M. Power Management and Synchroniza-tion Control of Renewable Energy Microgrid Based on STATCOM. In 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific) 1-6 (IEEE, 2014). https://doi.org/10.1109/ITEC-AP.2014.6941242.
- [25] Yang, Y., Ye, Q., Tung, L. J., Greenleaf, M. & Li, H. Integrated size and energy management design of battery storage to enhance grid integration of large-scale PV power plants. IEEE Trans. Ind. Electron. 65, 394-402 (2018). https://doi.org/10.1109/TIE.2017.2721878.
- [26] Yüksek, G. & Mete, A. N. A P&O based variable step size MPPT algorithm for photovoltaic applications. Gazi Univ. J. Sci. 36, 608-622 (2023). https://doi.org/10.35378/gujs.1050325.
- [27] Makdisie, C. J. & Mariam, M. F. Applied Power Electronics: Rectifiers, Choppers, Regulators. in Handbook of Research on New Solutions and Technologies in Electrical Distribution Networks 362-407 (IGI Global, 2020). https://doi.org/10.4018/978-1-7998-1230-2.ch018.
- [28] Satyanarayana, K. V. V. & Maurya, R. Power Converters for Integration of Electrical Sources to DC Microgrid. in 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) 1-6 (IEEE, 2022). https://doi.org/10.1109/PEDES56012.2022.10080621.
- [29] Zhang, G., Dai, Y. & Cui, J. Design and Realization of A Bi-directional DC/DC Converter in Photovoltaic Power System. in Proceedings of the 2016 International Forum on Energy, Environment and Sustainable Development 1095-1100 (Atlantis Press, 2016). https://doi.org/10.2991/ifeesd-16.2016.197.
- [30] Jaga, O. P., Gupta, R., Jena, B. & GhatakChoudhuri, S. Bi-directional DC/DC converters used in interfacing ESSs for RESs and EVs: A review. IETE Tech. Rev. 40, 334-370 (2023). https://doi.org/10.1080/02564602.2022.2116362.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-11f4c8ae-b539-429d-a89b-364eae4c1ec2