Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Early detection is fundamental for the effective treatment of breast cancer and the screening mammography is the most common tool used by the medical community to detect early breast cancer development. Screening mammograms include images of both breasts using two standard views, and the contralateral asymmetry per view is a key feature in detecting breast cancer. However, most automated detection algorithms do not take it into account. In this research, we propose a methodology to incorporate said asymmetry information into a computer-aided diagnosis system that can accurately discern between healthy subjects and subjects at risk of having breast cancer. Furthermore, we generate features that measure not only a view-wise asymmetry, but a subject-wise one. Briefly, the methodology co-registers the left and right mammograms, extracts image characteristics, fuses them into subject-wise features, and classifies subjects. In this study, 152 subjects from two independent databases, one with analog- and one with digital mammograms, were used to validate the methodology. Areas under the receiver operating characteristic curve of 0.738 and 0.767, and diagnostic odds ratios of 23.10 and 9.00 were achieved, respectively. In addition, the proposed method has the potential to rank subjects by their probability of having breast cancer, aiding in the re-scheduling of the radiologists' image queue, an issue of utmost importance in developing countries.
Wydawca

Rocznik
Strony
115--125
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • CONACyT - Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, 98000 Zacatecas, Mexico, jose.celaya@uaz.edu.mx
  • CONACyT - Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, 98000 Zacatecas, Mexico
  • Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
  • Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
  • Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
  • Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
  • Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
  • Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
  • Universidad de Monterrey, San Pedro Garza García, Nuevo Leon, Mexico
  • Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
  • Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
  • Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
autor
  • University of Science and Information Technology, Ohrid, Macedonia
Bibliografia
  • [1] DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA: Cancer J Clin 2014;64:52–62.
  • [2] Miller AB, Wall C, Baines CJ, Sun P, To T, Narod SA. Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial. BMJ 2014;348.
  • [3] Løberg M, Lousdal ML, Bretthauer M, Kalager M. Benefits and harms of mammography screening. Breast Cancer Res 2015;17:63.
  • [4] Rangayyan RM, Ayres FJ, Leo Desautels JE. A review of computer-aided diagnosis of breast cancer: toward the detection of subtle signs. J Franklin Inst 2007;344:312–48.
  • [5] Bleyer A, Welch HG. Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med 2012;367:1998–2005.
  • [6] Ng EY-K, Fok S-C. A framework for early discovery of breast tumor using thermography with artificial neural network. Breast J 2003;9:341–3.
  • [7] Ng E, Kee E, Acharya UR. Advanced technique in breast thermography analysis. 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005. IEEE; 2005. p. 710–3.
  • [8] Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U, et al. Prospective trial comparing full-field digital mammography (ffdm) versus combined ffdm and tomosynthesis in a population-based screening programme using independent double reading with arbitration. Eur Radiol 2013;23:2061–71.
  • [9] Houssami N, Bernardi D, Pellegrini M, Valentini M, Fantò C, Ostillio L, et al. Breast cancer detection using single-reading of breast tomosynthesis (3d-mammography) compared to double-reading of 2d-mammography: evidence from a population-based trial. Cancer Epidemiol 2017;47:94–9.
  • [10] Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 2007;31:198–211.
  • [11] Lee H, Chen Y-PP. Image based computer aided diagnosis system for cancer detection. Expert Syst Appl 2015;42: 5356–65.
  • [12] Lo C-M, Chang R, Huang C, Moon W. Computer-aided diagnosis of breast tumors using textures from intensity transformed sonographic images. 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering. Springer; 2015. p. 124–7.
  • [13] Ganesan K, Acharya UR, Chua CK, Min LC, Abraham KT, Ng K-H. Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng 2013;6:77–98.
  • [14] Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y. Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inform Technol Biomedon 2009;13:236–51.
  • [15] Oliver A, Freixenet J, Marti J, Pérez E, Pont J, Denton ERE, et al. A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 2010;14:87–110.
  • [16] Dhungel N, Carneiro G, Bradley AP. A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 2017;37:114–28.
  • [17] Baker JA, Rosen EL, Lo JY, Gimenez EI, Walsh R, Soo MS. Computer-aided detection (CAD) in screening mammography: sensitivity of commercial CAD systems for detecting architectural distortion. Am J Roentgenol 2003;181:1083–8.
  • [18] Eadie LH, Taylor P, Gibson AP. A systematic review of computer-assisted diagnosis in diagnostic cancer imaging. Eur J Radiol 2012;81:e70–6.
  • [19] Dromain C, Boyer B, Ferre R, Canale S, Delaloge S, Balleyguier C. Computed-aided diagnosis (CAD) in the detection of breast cancer. Eur J Radiol 2013;82:417–23.
  • [20] Kozegar E, Soryani M, Minaei B, Domingues I. Assessment of a novel mass detection algorithm in mammograms. J Cancer Res Therap 2013;9:592.
  • [21] de Sampaio WB, Silva AC, de Paiva AC, Gattass M. Detection of masses in mammograms with adaption to breast density using genetic algorithm, phylogenetic trees, lbp and svm. Expert Syst Appl 2015;42:8911–28.
  • [22] Doi K. Current status and future potential of computer- aided diagnosis in medical imaging. Br J Radiol 2014.
  • [23] Miranda GHB, Felipe JC. Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput Biol Med 2015;64:334–46.
  • [24] Dheeba J, Singh NA. Computer aided intelligent breast cancer detection: second opinion for radiologists – a prospective study. Computational Intelligence Applications in Modeling and Control. Springer; 2015. p. 397–430.
  • [25] Raghavendra U, Acharya UR, Fujita H, Gudigar A, Tan JH, Chokkadi S. Application of gabor wavelet and locality sensitive discriminant analysis for automated identification of breast cancer using digitized mammogram images. Appl Soft Comput 2016;46:151–61.
  • [26] Zheng B, Sumkin JH, Zuley ML, Wang X, Klym AH, Gur D. Bilateral mammographic density asymmetry and breast cancer risk: a preliminary assessment. Eur J Radiol 2012;81:3222–8.
  • [27] Wang X, Lederman D, Tan J, Wang XH, Zheng B. Computerized prediction of risk for developing breast cancer based on bilateral mammographic breast tissue asymmetry. Med Eng Phys 2011;33:934–42.
  • [28] Wang X, Lederman D, Tan J, Wang XH, Zheng B. Computerized detection of breast tissue asymmetry depicted on bilateral mammograms: a preliminary study of breast risk stratification. Acad Radiol 2010;17:1234–41.
  • [29] Scutt D, Manning JT, Whitehouse GH, Leinster SJ, Massey CP. The relationship between breast asymmetry, breast size and the occurrence of breast cancer. Br J Radiol 1997;70:1017–21.
  • [30] Suri JS, Rangayyan RM. Recent advances in breast imaging, mammography, and computer-aided diagnosis of breast cancer, volume 155. SPIE press; 2006.
  • [31] Miller P, Astley SM. Detection of breast asymmetry using anatomical features. IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology. International Society for Optics and Photonics; 1993. p. 433–42.
  • [32] Miller P, Astley S. Automated detection of breast asymmetry using anatomical features. State of the Art in Digital Mammographic Image Analysis, Series in Machine Perception and Artificial Intelligence, vol. 9. 1994. pp. 247–61.
  • [33] Ferrari RJ, Rangayyan RM, Desautels JEL, Borges RA, Frere AF. Automatic identification of the pectoral muscle in mammograms. IEEE Trans Med Imaging 2004;23:232–45.
  • [34] Torrents-Barrena J, Puig D, Melendez J, Valls A. Computer-aided diagnosis of breast cancer via gabor wavelet bank and binary-class svm in mammographic images. J Exp Theoret Artif Intell 2016;28:295–311.
  • [35] Evans KK, Haygood TM, Cooper J, Culpan A-M, Wolfe JM. A half-second glimpse often lets radiologists identify breast cancer cases even when viewing the mammogram of the opposite breast. Proc Natl Acad Sci USA 2016;113:10292–7.
  • [36] Celaya-Padilla J, Martinez-Torteya A, Rodriguez-Rojas J, Galvan-Tejada J, Treviño V, Tamez-Peña J. Bilateral image subtraction and multivariate models for the automated triaging of screening mammograms. BioMed Res Int 2015;2015.
  • [37] Chan H-P, Wei D, Helvie MA, Sahiner B, Adler DD, Goodsitt MM, et al. Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space. Phys Med Biol 1995;40:857.
  • [38] Rosenfeld A. Multiresolution image processing and analysis, vol. 12. Springer Science & Business Media; 2013.
  • [39] Mattes D, Haynor DR, Vesselle H, Lewellyn TK, Eubank W. Nonrigid multimodality image registration. Medical Imaging 2001. International Society for Optics and Photonics; 2001. p. 1609–20.
  • [40] Rangayyan RM, Banik S, Desautels JEL. Computer-aided detection of architectural distortion in prior mammograms of interval cancer. J Dig Imaging 2010;23:611–31.
  • [41] Ibanez L, Schroeder W, Ng L, Cates J. The ITK software guide. Kitware; 2003.
  • [42] Ganesan K, Acharya UR, Chua KC, Min LC, Abraham KT. Pectoral muscle segmentation: a review. Comput Methods Programs Biomed 2013;110:48–57.
  • [43] Galván-Tejada CE, Zanella-Calzada LA, Galván-Tejada JI, Celaya-Padilla JM, Gamboa-Rosales H, Garza-Veloz I, et al. Multivariate feature selection of image descriptors data for breast cancer with computer-assisted diagnosis. Diagnostics 2017;7:9.
  • [44] Galván-Tejada CE, García-Vázquez JP, García-Ceja E, Carrasco-Jiménez JC, Brena RF. Evaluation of four classifiers as cost function for indoor location systems. Proc Comput Sci 2014;32:453–60.
  • [45] Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer P. The digital database for screening mammography. Proceedings of the 5th International Workshop on Digital Mammography; 2000. p. 212–8.
  • [46] López MAG, de Posada NG, Moura DC, Pollán RR, Valiente JMF, Ortega CS, et al. BCDR: a breast cancer digital repository. 15th International Conference on Experimental Mechanics; 2012.
  • [47] Beasley TM, Erickson S, Allison DB. Rank-based inverse normal transformations are increasingly used, but are they merited? Behav Genet 2009;39:580–95.
  • [48] Diez Y, Oliver A, Lladó Xavier, Freixenet J, Marti J, Vilanova JC, et al. Revisiting intensity-based image registration applied to mammography. IEEE Trans Inform Technol Biomed 2011;15:716–25.
  • [49] Martí R, Díez Y, Oliver A, Tortajada M, Zwiggelaar R, Lladó X. Detecting abnormal mammographic cases in temporal studies using image registration features. Breast Imaging. Springer; 2014. p. 612–9.
  • [50] Yin F, Giger ML, Doi K, Metz CE, Vyborny CJ, Schmidt RA. Computerized detection of masses in digital mammograms: analysis of bilateral subtraction images. Med Phys 1991;18:955–63.
  • [51] Rodriguez-Rojas J, Garza-Montemayor M, Trevino-Alvarado V, Tamez-Pena JG. Predictive features of breast cancer on Mexican screening mammography patients. SPIE Medical Imaging. International Society for Optics and Photonics; 2013. p. 867023–9.
  • [52] Tan M, Zheng B, Ramalingam P, Gur D. Prediction of near-term breast cancer risk based on bilateral mammographic feature asymmetry. Acad Radiol 2013;20:1542–50.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-11d9f643-5b60-440e-9d44-9c42b5960b1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.