Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 44, No. 2 | 223--245
Tytuł artykułu

On a Restricted Admissibility Compulsory Vacation Queue with Essential and Optional Services

Warianty tytułu
PL
System kolejkowy z obowiązkową usługą dwufazową i obowiązkowymi przestojami, usługami na życzenie i ograniczoną dostępnością.
Języki publikacji
EN
Abstrakty
EN
In this paper, we study a single server queueing system in which the customers arrive according to a Poisson process with two phases of services. The customers may require, with a certain probability, an optional secondary service upon completion of the two phases of essential service. The server takes a vacation compulsorily after completion of service to a customer. In addition the admission of the customer to the queue is based on a Bernoulli process. The model is studied using supplementary variable techniques. Some special models are derived and some illustrative cases are discussed. Also, the queue has been realized using simulation.
PL
Tematem tej pracy jest model serwera systemu kolejkowego z poissonowskim strumieniem zgłoszeń i obsługą podzieloną na dwie obowiązkowe fazy. Klienci mogą wymagać z pewnym prawdopodobieństwem opcjonalnej usługi dodatkowej po zakończeniu dwóch etapów podstawowych usługi. Po zakończeniu obsługi klienta następuje obowiązkowy przestój. Przy zajętym serwerze klienci dołączają do kolejki zgodnie z procesem Bernoulliego. Przy badaniu systemu stosowane są metody zmiennych dodatkowych. Pewne szczególne przypadki są analizowane szczegółowo. Ilustracją są wyniki eksperymentów symulacyjnych.
Wydawca

Rocznik
Strony
223--245
Opis fizyczny
Bibliogr. 29 poz., fot., tab., wykr.
Twórcy
autor
  • SRM University, Department of Mathematics, Kattankulathur-603203, India, v.suvi08@gmail.com
Bibliografia
  • [1] Jehad Al-Jararha and Kailash C. Madan. An M/G/1 queue with second optional service with general service time distribution. Internat. J. Inform. Management Sci., 14 (2): 47–56, 2003. MR 1980280.
  • [2] R. B. Cooper. Queues served in cyclic order: Waiting times. Bell System Tech. J., 49: 399–413, 1970. MR 0260059, Zbl 0208.22502.
  • [3] Robert B. Cooper. Introduction to queueing theory. North-Holland Publishing Co., New York-Amsterdam, second edition, 1981. MR 636094.
  • [4] Bharat Doshi. Single server queues with vacations. In Stochastic analysis of computer and communication systems, pages 217–265. North-Holland, Amsterdam, 1990. MR 1150292.
  • [5] Bharat Doshi. Analysis of a two phase queueing system with general service times. Oper. Res. Lett., 10 (5): 265–272, 1991. doi: 10.1016/0167-6377(91)90012-E, MR 1122328, Zbl 0738.60091.
  • [6] Jau-Chuan, Ke. An MX/G/1 system with startup server and J additional options for service. Applied Mathematical Modelling, 32 (4):443–458, 2008. doi: 10.1016/j.apm.2006.12.011.
  • [7] Jinting Wang. An M/G/1 queue with second optional service and server break downs. Computers and Mathematics with Applications, 47 (10-11): 1713–1723, 2004. doi: 10.1016/jmath.camwa.2004.06.024.
  • [8] R. Kalyanaraman and V. Suvitha. A single server compulsory vacation queue with two type of services and with restricted admissibility, International Journal of and Management Sciences. 23 (3): 287–304, 2012. doi: 10.6186/IJIMS.2012.23.3.4.
  • [9] R. Kalyanaraman and V. Suvitha. A single server Bernoulli vacation queue with two type of services and with restricted admissibility. International Journal of Mathematical Modelling and Computations, 2 (4): 261–276, 2012.
  • [10] R. Kalyanaraman and V. Suvitha. A single server multiple vacation queue with two type of services and with restricted admissibility. Annamalai University Science Journal, 49, 19–28, 2015.
  • [11] R. Kalyanaraman, N. Thillaigovindan, G. Ayyappan and P. Manoharan. An M/G/1 retrial queue with second optional service. Octogon, 13 (2): 966–973, 2005.
  • [12] R. Kalyanaraman, N. Thillaigovindan and G. Kannadasan. A fuzzy bulk queue with Modified Bernoulli vacation and restricted admissible customers. Journal of Intelligent and Fuzzy System, 24: 837–845, 2013. doi: 0.3233/IFS.120602.
  • [13] J. Keilson and L. Servi. Oscillating random walk models for GI/G/1 vacation systems with Bernoulli schedules. Journal of Applied Probability, 23: 790–802, 1986. doi: DOI: http://dx.doi.org/10.1017/S0021900200111933.
  • [14] Y. Levy, M. Sidi and O. J. Boxma. Dominance relations in polling systems. Queueing systems, 6: 155–172, 1990. doi: 10.1007/BF02411471.
  • [15] Y. Levy and U. Yechiali. Utilization of idle time in an M/G/1 queueing system. Management Sciences, 22: 202–211, 1975. doi: 10.1287/mnsc.22.2.202.
  • [16] K. C. Madan. An M/G/1 queueing system with compulsory server vacations. TRABAJOS DE INVESTIGACION OPERATIVA, 7 (1): 105–115, 1992. doi: 10.1007/BF02888261.
  • [17] K. C. Madan. An M/G/1 queueing system with additional optional service and no waiting capacity. Microelectronics and Reliability, 34 (3): 521–527, 1994. doi: 10.1016/0026.2714(94)90090.6.
  • [18] K. C. Madan. An M/G/1 queue with second optional service. Queueing systems, 34: 37–46, 2000.
  • [19] K. C. Madan. On a single server queue with two stage heterogeneous service and deterministic server vacations. International Journal of System Science, 32 (7): 837–844, 2001. doi: 10.1080/00207720121488.
  • [20] K. C. Madan and W. Abu-Dayyeh Restricted admissibility of batches into an M/G/1 type bulk queue with modified Bernoulli Schedule Server vacation. ESAIM: Probability and Statistics, 6: 113–125, 2002. doi: 10.1051/P8:2002006.
  • [21] J. Medhi. A single server Poisson input queue with a second optional channel. Queueing systems, 42: 239-242, 2002. doi: 10.1023/A:1020519830116.
  • [22] Miller, L. W., (1964), Alternating priorities in multi-class queue, Ph.D, Dissertation, Cornell University, Ithaca, N. Y.
  • [23] M. F. Neuts. The M/G/1 queue with limited number of admissions or a limited admission period during each service time, Technical Report No. 978, University of Delaware, 1984.
  • [24] M. Ross Sheldon. Simulation. Third Edition, Academic Press, USA, 2002.
  • [25] R. C. Rue and M. Rosenshine. Some properties of optimal control policies for entries to an M/M/1 queue. Naval Research Logistics Quartely, 28: 525–532, 1981. doi: 10.1002/nav.3800280402.
  • [26] Jr. S. Stidham. Optimal control of admission to the queueing system, IEEE Transactions on Automatic Control, AC-30, 705-713, 1985.
  • [27] H. Takagi. Queueing Analysis, Vol. 1: Vacation and Priority Systems. North Holland, Amsterdam, 1991.
  • [28] N. Tian and Z. G. Zhang. Vacation Queueing Models: Theory and Applications. Springers, 2006.
  • [29] A. B. Zadeh. A batch arrival queue system with Coxian-2 server vacations and admissibility restricted. American Journal of Industrial and Business Management, 2: 47–54, 2012. doi: 10.4236/ajibm.2012.22007.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-11a267a3-4246-4c16-a66c-ae354cf3d7fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.