Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 50, nr 1 | 27--41
Tytuł artykułu

Comparative study on the adsorption of lead ions by kaolin loaded chitosan by different modification methods

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The adsorption effect of two modified kaolin-chitosan composites prepared by different modification methods (cross-linking method (GL-CS) and click reaction method (TGL-CS) on lead ion wastewater was studied. The structure of TGL-CS has a denser pore structure than that of GL-CS, and the distribution of adsorption sites is more uniform. At 25 °C, pH 4, the adsorbent dosage of 0.05 g/dm3, reaction time of 4 h, and initial mass concentration of 150 mg/dm3, TGL-CS had the best effect on Pb2+ wastewater treatment, and the adsorption capacity was 76.159 mg/g. The adsorption studies of kinetic, thermodynamic, and thermodynamic parameters showed that the adsorption on GL-CS and TGL-CS was best described by the Langmuir model. The adsorption mechanism is mainly chemical adsorption. The adsorption process is spontaneous. These results show that the adsorbent prepared by click reaction has obvious advantages, with more adsorption capacity and adsorption sites, faster adsorption rate, and better application potential.
Wydawca

Rocznik
Strony
27--41
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, China, zhangshuqin@wust.edu.cn
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
autor
  • College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, China
autor
  • College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, China
  • College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, China
autor
  • College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
  • College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
Bibliografia
  • [1] BRIFFA J., SINAGRA E., BLUNDELL R., Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 2020, 6, e04691. DOI: 10.1016/j.heliyon.2020.e04691.
  • [2] ADNAN M., XIAO B., XIAO P., ZHAO P., LI R., BIBI S., Research progress on heavy metals pollution in the soil of smelting sites in China, Toxics, 2022, 10. DOI: 10.3390/toxics10050231.
  • [3] LU R., FU J., WANG C., QIU C., Research progress on the characteristics of heavy metal transfer and transformation in municipal sludge treatment, J. Environ. Eng. Techn., 2023, 13 (01), 318–324. DOI: 10.12153 /j.issn. 1674-991X.20210762.
  • [4] SHI J.D., ZHAO D., REN F.T., HUANG L., Spatiotemporal variation of soil heavy metals in China. The pollution status and risk assessment, Sci. Total Environ., 2023, 871. DOI: 10.1016/j.scitotenv. 2023. 161768.
  • [5] IFTIKHAR A., UMAIR A., LARAIB M. et al., Treatment methods for lead removal from wastewater, [In:] Lead Toxicity: Challenges and Solution, N. Kumor, A.H. Jha (Eds.), Springer Nature, Switzerland, 2023, 197–226. DOI: 10.1007/978-3-031-37327-5_10.
  • [6] SHI R., Study on adsorption performance ofdiatomite adsorbent for heavy metal ions in water, 2021. DOI: 10.27671/d.cnki.gcjtc.2021.000583.
  • [7] NING Z., ALHADI I., YING L., HUIHUI W., HAN G., PENG M., QIANG M., YUBING S., Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method. A review, J. Clean. Prod., 2020, 277, 123360. DOI: 10.1016/j.jclepro.2020.123360.
  • [8] KAYALVIZHI K., ALHAJI N.M.I., SARAVANAKKUMAR D., S BEER M., KAVIYARASU K., AYESHAMARIAM A., AMAL M.AL.-M., ABDELGAWWAD M.R., ELSHIH M.S., Adsorption of copper and nickel by using saw-dust chitosan nanocomposite beads. A kinetic and thermodynamic study, Environ. Res., 2022, 203, 111814. DOI: 10.1016/j.envres.2021.111814.
  • [9] JI Z., ZHANG Y.S, WANG H.C., LI C., Research progress in the removal of heavy metals by modified chitosan, Tens. Surf. Det., 2022, 59 (4), 281–293. DOI: 10.1515/tsd-2021-2414.
  • [10] ADI L., GUO Z., HU Y., Research progress on modification technology of chitosan and its application in water treatment, Cont. Chem. Ind., 2022, 51 (11), 2732–2735, 2758. DOI: 10.13840/j.cnki.cn21 -1457/tq.2022.11.005.
  • [11] FENG S., ZU Y., ZHAO C., GONG M., XIN Y., JIANG W., WANG D., Research progress on adsorption of heavy metal ions in water by modified chitosan adsorbent, Pol. Mate. Sci. Eng., 2022, 38 (8), 185–190. DOI: 10.16865/j.cnki.1000-7555.2022.0184.
  • [12] ZHANG S., LU F., JIANG L., Electrochemical properties of kaolin interface and its adsorption of heavy metals, J. Shandong Agricultural University (Natural Science Edition), 2014, 45 (5), 675–679, 685. DOI: 10.13840/j.cnki.cn21-1457/tq.2019.08.007.
  • [13] CHAI J., AU P., MUBARAK N., KHALID M., NG W., JAGADISH P., WALVEKAR R., ABDULLAH E., Adsorption of heavy metal from industrial wastewater onto low-cost malaysian kaolin clay-based adsorbent, Environ. Sci. Poll. Res., 2020, 27, 13949–13962. DOI: 10.1007/s11356-020-07755-y.
  • [14] HE G., WANG C., CAO J., FAN L., ZHAO S., CHAI Y., Carboxymethyl chitosan-kaolinite composite hydrogel for efficient copper ions trapping, J. Environ. Chem. Eng., 2019, 7, 102953. DOI: 10.1016 /j.jece.2019.102953.
  • [15] VEDULA S.S., YADAV G.D., Superior efficacy of biocomposite membranes of chitosan with montmorillonite and kaolin vs pure chitosan for removal of Cu(II) from wastewater, J. Chem. Sci., 2022, 134 (2), 1–12.
  • [16] LIU D.-M., DONG C., XU B., Preparation of magnetic kaolin embedded chitosan beads for efficient removal of hexavalent chromium from aqueous solution, J. Environ. Chem. Eng., 2021, 9 (4), 105438. DOI: 10.1016/j.jece.2021.105438.
  • [17] ZHOU Y., LIU Q., SUN J., HUANG T., Study on adsorption of phosphorus from wastewater by chitosan/kaolin composite, China Biogas, 2022, 40 (6). DOI: 10.1016/j.cnki.1000-1166.2022060043.
  • [18] YANG W., XIE H., Adsorption of heavy metal ions in electroplating wastewater by chitosan interca-lated kaolin, Mater. Prot., 2016, 49 (11), 75–78. DOI: 10.16577/j.cnki.42-1215/tb.2016.11.021.
  • [19] YAP P.L., AUYOONG Y.L., HASSAN K., FARIVAR F., TRAN D.N.H., MA J., LOSIC D., Multithiol functionalized graphene bio-sponge via photoinitiated thiolene click chemistry for efficient heavy metal ions adsorption, Chem. Eng. J., 2020, 395, 124965. DOI: 10.1016/j.cej.2020.124965.
  • [20] CHEN L., Preparation of chitosan modified material and its adsorption capacity for heavy metal ions in wastewater, 2023, 2, 95. DOI: 10.27859/d.cnki.gxhsf.2022.000239.
  • [21] ELANCHEZHIYAN S.S., KARTHIKEYAN P., RATHINAM K., HASMATH FARZANA M., PARK C.M., Magnetic kaolinite immobilized chitosan beads for the removal of Pb(II), Carb. Polym., 2021, 261, 117892. DOI: 10.1016/j.carbpol.2021.117892.
  • [22] ANITHA T., SENTHIL KUMAR P., SATHISH KUMAR K., RAMKUMAR B., RAMALINGAM S., Adsorptive removal of Pb(II) ions from polluted water by newly synthesized chitosan-polyacrylonitrile blend. Equilibrium, kinetic, mechanism and thermodynamic approach, Proc. Saf. Environ. Prot., 2015, 98, 187–197. DOI: 10.1016/j.psep.2015.07.012.
  • [23] TANG C., LI S., SHANG K., HUANG L., YANG F., LIU Y., Study on the performance of kaolin loaded modified chitosan heavy metal adsorbent, Cont. Chem. Ind., 2019, 48 (8), 1664–1667. DOI: 10.13840/j.cnki.cn21 -1457/tq. 2019.08.007.
  • [24] SUN Y., SHAH K.J., SUN W., ZHENG H., Performance evaluation of chitosan-based flocculants with good pH, Sep. Purif. Techn., 2019, 215, 208–216. DOI: 10.1016/j.seppur.2019.01.017.
  • [25] ATIF S., WANG J.H., SUN T.T., TONGTONG S., FAISAL S., MUHAMMAD H., SILI L., Enhanced and selective adsorption of copper ions from acidic conditions by diethylenetriaminepentaacetic acid-chitosan sewage sludge composite, J. Environ. Chem. Eng., 2020, 8, 104430. DOI: 10.1016/j.jece.2020.104430.
  • [26] YANG K., JIANG Y., YANG J., LIN D., Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C, Environ. Poll., 2018, 233, 64–70. DOI: 10.1016 /j.envpol.2017.10.035.
  • [27] ZHANG D., XIE Y., SHI H., ZHUO X., LI X., Kinetics and thermodynamics studies on Ni2+ adsorption by modified chitosan, J. Shaoyang University (Natural Science Edition), 2019, 16 (03), 68–75. DOI: 1672 -7010(2019)03-0068-08.
  • [28] YANG J.B., HUANG B., LIN M.Z., Adsorption of hexavalent chromium from aqueous solution by a chitosan/bentonite composite: isotherm, kinetics, and thermodynamics studies, J. Chem. Eng. Data, 2020, 65, 2751–2763. DOI: 10.1021/acs.jced.0c00085.
  • [29] HUANG Z., NING Z., XIAO T., ZHAO Y., LIU Y., WU S., LAN X., Comparative study on the removal of Sb(V) from water by different adsorbents, Earth and Environ., 2017, 45 (5), 523–530. DOI: 10.14050/j.cnki.1672 -9250.2017.05.005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-119c7a12-66db-4404-8f41-c17ea76568c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.