Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 53, No. 2 | 193--209
Tytuł artykułu

Remark on borderline traces of Besov and Triebel-Lizorkin spaces on noncompact hypersurfaces

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate borderline traces of Besov and Triebel-Lizorkin spaces. The function spaces are defined on noncompact Riemannian manifolds with bounded geometry. We described spaces of traces on noncompact submanifolds that are also of bounded geometry.
Wydawca

Rocznik
Strony
193--209
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Umultowska 87, Poznan 61-614, lskrzyp@amu.edu.pl
autor
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Umultowska 87, Poznan 61-614, betom@amu.edu.pl
Bibliografia
  • [1] T. Aubin, Nonlinear problems in Riemannian Geometry, Springer Verlag, 1998.
  • [2] V.I. Burenkov and M.L. Goldman, Extension of functions from Lp. (Russian) Studies in the theory of differentiable functions of several variables and its applications, VII. Trudy Mat. Inst. Steklov. 150 (1979), 31-51.
  • [3] M. Frazier and B. Jawerth, Decomposition of Besov spaces. Indiana Univ. Math. J. 34 (1985), 777-799.
  • [4] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93 (1990), 34-170.
  • [5] S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry. Springer Verlag 1992.
  • [6] M.L. Goldman, Extension of functions in Lp(Rm) to a space of higher dimension, (Russian) Mat. Zametki 25 (1979), 513-520.
  • [7] N. Gro_e and C. Schneider, Sobolev spaces on Riemannian manifolds with bounded geometry: General coordinates and traces, Math. Nachr. DOI 10.1002/mana.201300007.
  • [8] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, AMS, Providence, Rhode Island 1999.
  • [9] M.A. Shubin, Spectral theory of elliptic operators on non–compact manifolds. Astérisque 207 (1992), 37-108.
  • [10] C. Schneider, Trace operators in Besov and Triebel-Lizorkin spaces, Z. Anal. Anwend. 29 (2010), 275–302.
  • [11] W. Sickel and L. Skrzypczak, Radial subspaces of Besov and Lizorkin-Triebel Classes: Extended Strauss Lemma and Compactness of Embedding, J. Fourier Anal. App. 6 (2000), 639-662.
  • [12] L. Skrzypczak, Atomic decompositions on manifolds with bounded geometry. Forum Math. 10 (1998), 19-38.
  • [13] L. Skrzypczak, Heat extensions, optimal atomic decompositions and Sobolev embeddings on in presence of symmetries on manifolds, Math. Zeitsch. 243 (2003), 745-773.
  • [14] L. Skrzypczak, Traces of function spaces of Fs p,q –Bs p,q type on submanifolds, Math. Nachr. 146 (1990), 137-147.
  • [15] H. Triebel, Diffeomorphism properties and pointwise multipliers for function spaces, in: Function spaces (Poznan, 1986), 75-84, Teubner-Texte Math., 103, Teubner, Leipzig, 1988.
  • [16] H. Triebel, Spaces of Besov-Hardy-Sobolev Type on Complete Riemannian manifolds, Arkiv Mat. 24 (1986), 300-337.
  • [17] H. Triebel, Theory of Function Spaces. Birkhäuser, Basel 1983.
  • [18] H. Triebel, Theory of Function Spaces II. Birkhäuser, Basel 1992.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-119bb447-c1ac-459a-bd7f-8e1512807dc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.