Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 2 | 92--98
Tytuł artykułu

Auto-berthing control for MSVs with a time-based generator under actuator faults: a concise neural single-parameter approach

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study the control problem of auto-berthing marine surface vessels (MSVs) within a predefined, finite time in the restricted waters of a port, in the face of internal and external uncertain dynamics and actuator faults. We first use radial basis function neural networks to reconstruct the internal uncertainties of the system; then, using the minimum learning parameter method, we transform the weights of the neural networks, the external disturbances of the system, and the bias fault factors into an indirect single-parameter neural learning mode. We also apply a robust depth information adaptation technique to estimate the upper bound on the composite disturbances online. Dynamic Surface control technology alleviates the burden of virtual control derivative calculations. Finite-time convergence of the system is guaranteed by a predetermined finite-time function based on a time-based generator (TBG). Based on these methods, we design a finite-time fault-tolerant auto-berthing control scheme based on TBG. The stability of the system is analysed based on Lyapunov stability theory. Finally, we verify the effectiveness of the proposed control scheme through simulation.
Wydawca

Rocznik
Tom
Strony
92--98
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • School of Ocean Information Engineering, Jimei University, Xiamen, 361024 China, lpchen@jmu.edu.cn
Bibliografia
  • 1. Shimizu S, Nishihara K, Miyauchi Y, et al. Automatic berthing using supervised learning and reinforcement learning. Ocean Engineering 265, 2022, doi: 10.1016/j.oceaneng.2022.112553.
  • 2. Sun T, Yin Y, Liu C. Integrated trajectory planning into automatic berthing control of underactuated ship based on fuzzy-backstepping method. Ocean Engineering, 291, 2024, doi: 10.1016/j.oceaneng.2023.116336.
  • 3. Zhang Y, Zhang M J, Zhang Q. Auto-berthing control of marine surface vehicle based on concise backstepping. IEEE Access 8:197059-197067, 2020, doi: 10.1109/ACCESS.2020.3034491.
  • 4. Peng Z H, Wang C, Yin Y, et al. Safety-certified constrained control of maritime autonomous surface ships for automatic berthing. IEEE Transactions on Vehicular Technology 72(7):8541-8552, 2023.
  • 5. Zhang Q, Zhu G, Hu X. Adaptive neural network autoberthing control of marine ships. Ocean Engineering 177:40-48, 2019, doi: 10.1016/j.oceaneng.2019.02.031.
  • 6. Xia G Q, Xue J J, Sun C, et al. Backstepping control using barrier Lyapunov function for dynamic positioning control system with passive observer. Mathematical Problems in Engineering 2019, doi: 10.1155/2019/8709369.
  • 7. Yang H L, Deng F, He Y, et al. Robust nonlinear model predictive control for reference tracking of dynamic positioning ships based on nonlinear disturbance observer. Ocean Engineering 215, 2020, doi: 10.1016/j.oceaneng.2020.107885.
  • 8. Meng X F, Zhang G C, Zhang Q, Han B. Event-triggered adaptive command filtered trajectory tracking control for underactuated surface vessels based on multivariate finitetime disturbance observer under actuator faults and input saturation. Transactions of the Institute of Measurement and Control, 2023, doi: 10.1177/01423312231195657.
  • 9. Yu S L, Lu J S, Zhu G B, Yang SJ. Event-triggered finite-time tracking control of underactuated MSVs based on Neural network disturbance observer. Ocean Engineering 253, 2022, doi:10.1016/j.oceaneng.2022.111169.
  • 10. Zhu G B, Ma Y, Hu S L. Single-parameter-learning-based finite-time tracking control of underactuated MSVs under input saturation. Control Engineering Practice 105, 2020, doi:10.1016/j.conengprac.2020.104652.
  • 11. Zhang Q, Zhang M J, Yang R M, et al. Adaptive Neural finite-time trajectory tracking control of MSVs subject to uncertainties. International Journal of Control Automation and Systems 19(6):2238-2250, 2019.
  • 12. Meng X F, Zhang G C, Zhang Q. Robust adaptive Neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and eventtriggered inputs. Mathematical Biosciences and Engineering 20(2):2131-2156, 2023, doi:10.3934/mbe.2023099.
  • 13. Deng Y J, Zhang X K, Im N, Zhang G Q, Zhang Q. Modelbased event-triggered tracking control of underactuated surface vessels with minimum learning parameters. IEEE Transactions on Neural Networks and Learning Systems 31(10):4001-4014, 2020, doi:10.1109/TNNLS.2019.2951709.
  • 14. Ma Y, Zhu G B, Li Z X. Error-driven-based nonlinear feedback recursive design for adaptive NN trajectory tracking control of surface ships with input saturation. IEEE Intelligent Transportation Systems Magazine 11(2):17-28, 2019, doi: 10.1109/MITS.2019.2903517.
  • 15. Zhu G B, Ma Y, Hu S L. Event-triggered adaptive PID fault-tolerant control of underactuated ASVS under saturation constraint. IEEE Transactions on Systems Man Cybernetics-Systems 53(8):4922-4933, 2023, doi:10.1109/TSMC.2023.3256538.
  • 16. Meng X F, Zhang G C, Han B. Fault-tolerant control of underactuated MSVs based on neural finite-time disturbance observer: An event-triggered mechanism. Journal of the Franklin Institute 361(4), 2024, doi: 10.1016/j. jfranklin.2024.01.004.
  • 17. Meng X F, Zhang G C, Zhang Q. Event-triggered trajectory tracking control of underactuated surface vessels with performance-improving mechanisms under input saturation and actuator faults. Transactions of the Institute of Measurement and Control 2023, doi:10.1177/01423312231187008.
  • 18. Fossen T I. Handbook of marine craft hydrodynamics and motion control. Wiley; 2011.
  • 19. Zhao K, Song Y, Wang Y. Regular error feedback based adaptive practical prescribed time tracking control of normalform nonaffine systems. Journal of the Franklin Institute 356(5):2759-2779, 2019.
  • 20. Park B S, Kwon J W, Kim H. Neural network-based output feedback control for reference tracking of underactuated surface vessels. Automatica,77:353-359, 2017, doi: 10.1016/j.automatica.2016.11.024.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-119af499-d809-417c-9565-4e98234531bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.