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Abstract

In this paper, we study the control problem of auto-berthing marine surface vessels (MSVs) within a predefined, finite 
time in the restricted waters of a port, in the face of internal and external uncertain dynamics and actuator faults. We 
first use radial basis function neural networks to reconstruct the internal uncertainties of the system; then, using the 
minimum learning parameter method, we transform the weights of the neural networks, the external disturbances of the 
system, and the bias fault factors into an indirect single-parameter neural learning mode. We also apply a robust depth 
information adaptation technique to estimate the upper bound on the composite disturbances online. Dynamic surface 
control technology alleviates the burden of virtual control derivative calculations. Finite-time convergence of the system 
is guaranteed by a predetermined finite-time function based on a time-based generator (TBG). Based on these methods, 
we design a finite-time fault-tolerant auto-berthing control scheme based on TBG. The stability of the system is analysed 
based on Lyapunov stability theory. Finally, we verify the effectiveness of the proposed control scheme through simulation.

Keywords: Auto-berthing control; Time-based generator; Minimum learning parameter; Finite-time control; Concise neural single-parameter; 
Actuator faults

INTRODUCTION

In recent years, with the continuous development of the marine 
economy, the problem of auto-berthing control (ABC) of marine 
surface vessels (MSVs) has received widespread attention [1]. 
When MSVs undergo automatic berthing, the systems rely on 
the force and torque of the propeller and propulsion system 
to work together [2]. The development of automatic berthing 
technology has promoted the continuous deepening of research 
on vessel motion control. In the related field of port logistics 
management, the development of automatic berthing technology 
has been related to port utilisation, and is an important factor 
in promoting environmentally sustainable development [3,4]. 
With the increasing expansion and complexity of the global trade 
system, the requirements for efficiency in port operations in 
related industries are constantly increasing [5]. Traditional manual 

operation methods have certain limitations in terms of accuracy, 
efficiency and environmental friendliness. The issue of how to 
develop advanced automatic berthing technology for surface vessels 
has therefore become a hot topic for both academia and industry.

The complex dynamic process of the movement of MSVs is 
affected by uncertain dynamics caused by external disturbances, 
and these external interference factors pose a huge challenge to the 
stability and safety of vessels. UnpredicTable environmental factors 
not only increase the complexity of vessel motion control but also 
impose higher requirements on the steady-state performance of 
the vessel control system. In this context, the use of disturbance 
observers (DOs) has become an effective way to solve the problem 
of external disturbances. Xia et al. [6] and Yang et al. [7] designed 
passive observers and nonlinear DOs for a control scheme. Passive 
observers estimate and compensate for perturbations through 
dynamic input from the system itself [6], and this approach offers 
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significant advantages in regard to energy efficiency and system 
simplification. In contrast, a nonlinear DO has greater advantages 
in dealing with complex disturbance problems caused by the 
nonlinear characteristics of vessel dynamics [7], but can only 
handle slowly changing perturbations. To solve this problem, 
Meng et al. [8] developed an adaptive DO that could adapt to 
changes in the environment and system dynamics by adjusting 
the observer parameters in real time. This method enhanced 
the adaptability of the system and its robustness to unknown 
disturbances and parameter changes. Yu et al. [9] developed 
an FTDO to further improve the efficiency of disturbance 
reconstruction, which ensured that the system could accurately 
estimate and compensate for disturbances within a finite time. 
However, it should be pointed out that this was a control scheme 
designed by combining radial basis neural networks (NNs) with 
FTDO, and the problem of the huge computational load imposed 
by such a solution was not addressed.

In practical applications, the steady-state performance and 
transient response of a vessel control system are crucial. Finite 
time control (FTC) technology can ensure that high-precision 
control tasks are completed within strict time limits, which 
enables MSVs to achieve rapid and accurate state adjustment 
within a finite time. This technology can also enhance an MSV’s 
adaptability and response speed to sudden disturbances. Zhu et al. 
[10] and Zhang et al. [11] developed finite-time control schemes 
under internal and external uncertain dynamics. However, the 
introduction of NN technology increases the computational load 
of the system, and an indirect NN approximation scheme is more 
closely aligned with the actual needs of the application. Meng 
et al. [12] and Deng et al. [13] aimed to reduce the computational 
load of the system by introducing minimum learning parameter 
(MLP) technology. Ma et al. [14] developed an error-driving 
function to compensate for the control accuracy loss in norm 
calculation reported in [12] and [13]. However, this scheme did 
not have finite-time convergence characteristics. In addition, 
most of the studies described above did not consider limitations 
due to actuator faults.

Inspired by the above work, we develop a  TBG-based 
predefined finite-time ABC scheme under actuator failure. 
The main contributions of this article are as follows:
(1) �We solve the actuator fault problem in the ABC problem 

for the first time. Unlike the authors of [11,14], we consider 
the limitations arising from actuator faults by considering 
dynamic uncertainties and external disturbances. Unlike the 
studies in [12][17], the control scheme designed in this paper 
actively compensates for the loss-of-effectiveness (LOE) fault 
factor of the system.

(2) �We integrate MLP with NNs and deep information robust 
adaptive technology to integrate the system’s fault factors, 
external disturbances, and NN weights into a  simple 
neural single-parameter form. Compared with [9][16], the 
processing method proposed in this paper reduces the system’s 
computing load more effectively. Moreover, the designed 
scheme is concise and easy to apply in actual projects.

(3) �We develop a novel FTC scheme. Unlike in [8][10], no 
additional proportional or differential terms are added to 
the structure of the control law; this ensures the conciseness 
of the controller structure and compensates for the loss of 

control accuracy in norm calculation.

PROBLEM FORMULATION 
AND PRELIMINARIES

PROBLEM FORMULATION

In general, a mathematical model for MSVs can be expressed 
as [18]:

(1)

               u̇ = fu(v) + m11

1  (Fτu + Fdu)

 v̇ = fv(v) + m22

1  (Fτv + Fdv)        (2)

               ṙ = fr(v) + m33

1  (Fτr + Fdr)

where x, y, ψ represent the position and course angle of the MSV, 
respectively; u, v, r represent the surge velocity, sway velocity 
and yaw velocity, respectively; fu(v) = m11

1 (m22ur–d11u–du|u|u),  
fv(v) = m22

1 (–m11ur–d22v–dv|v|v), fr(v) = m33

1 [(m11–m22)uv–d33u–
dr|r|r] are nonlinear dynamics; m11, m22, m33are inertial masses; 
Fdu, Fdv, Fdr represent external interference items; and Fτu, Fτv, 
Fτr represent control inputs subject to actuator fault constraints. 
Two types of actuator faults, known as LOE faults and bias 
faults, are considered in this work. The specific mathematical 
expressions for these are as follows [15]:

              Fτu = Fρuτu + F∂u

 Fτv = Fρvτv + F∂v              (3)

              Fτr = Fρrτr + F∂r

where τu, τv and τr represent control inputs; 0  <  Fρu  <  1, 
0 < Fρv < 1,  0 < Fρr < 1 are LOE faults; and F∂u ≠ 0, F∂v ≠ 0, 
F∂r ≠ 0 are bias faults.

Assumption 1: fi(v), i = (u, v, r) are unknown. Interference 
items outside the system external interference Fdi, i = (u, v, r) 
are unknown and bounded. That is, there are unknown positive 
constants θi, such that Fdi satisfies |Fdi | ≤ θi.
Assumption 2: A reference trajectory xd, yd, ψd, ẋd, ẏd, ψ̇d, ẍd, ÿd, 
ψ̈d is available. 

PREDEFINED FINITE-TIME FUNCTION WITH TBG

TBG is a nonlinear time-related function whose initial 
and final values satisfy specific constraints. For the following 
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properties, if they are assigned (t*) , the function can be called 
TBG [19].
(1) �[t*(0)] = 1, (t*), (ṫ*), (ẗ*) are continuous and bounded.
(2) �(t*) = 1 for t* > β, where β is the predefined setting time.
(3) �The first and second derivatives of (t*) exist, and are 

continuously decreasing for t*   [0, β].
The following are some clear examples of (t*):

(t*) = 
β – t* p

(p≥2)t*<β

0        t*>β
β             (4)

(t*) = 
β – t* p

e–t*(p≥2)t*<β

0        t*>β
β            (5)

(t*) = 
β – t* p

λ(t*)(p≥2)t*<β

0        t*>β
β         (6)

where λ(t*) is a continuous and non-increasing time-dependent 
function, and λ(0) = 1. λ(t*) is second-order differentiable. In 
addition, the function itself and its first and second derivatives 
are bounded.

According to the nature of TBG, we constructed the 
predefined finite-time function with TBG as follows:

π(t*) = [(1–σ)(t*) + σ]–1          (7)

where σ   (0,1) is a positive definite design parameter.
Lemma 1 A predefined finite-time function with TBG has the 
following properties:
(1) �π(t*) and π̇ (t*) are continuously differentiable and bounded. 

π̈ (t*) is continuous and bounded.
(2) �For all t*   [0, β], π(t*) is a strictly increasing function.
(3) �Let ω =  π̇(t*) π–1(t*), where ω > 0 and its derivative is 

continuous and bounded.

CONTROL DESIGN  
AND STABILITY ANALYSIS

First, we define the tracking error as follows

xe
ye
ψe

 = 
x–xd
y–yd
ψ–ψd

              (8)

where xd, yd are the reference positions of the system, and ψd is 
the reference heading.

According to the finite-time function π(t*), the tracking 
error in (8) is converted as follows

                  x̃ = πx xe

 ỹ = πy ye                  (9)

                  ψ̃ = πψ ψe

Taking the time derivative of Eq. (9), we obtain

   ẋ̃ = π̇xxe+πx(ẋ–ẋd)= πx[ωxxe+u cos(ψ)–v sin(ψ)]

 ỹ̇ = π̇yye+πy(ẏ–ẏd)= πy[ωyye+u sin(ψ)+v cos(ψ)] (10)

   ψ̇̃ = π̇ψψe+πψ(ψ̇ –ψ̇d)= πψ[ωψψe+r]

Based on Eq. (10), the virtual control law is designed as 
follows:

         δu = cos–1(ψ)[–ϕ1xe–ωx xe+v sin(ψ)]

 δv = cos–1(ψ)[–ϕ2ye–ωy ye–u sin(ψ)]    (11)

         δr = –ϕ3ψe–ωψψe

where ϕ1, ϕ2, ϕ3 are positive definite design parameters.
The structural velocity tracking error is as follows:

ue
ve
re

 = 
u–δ̂u
v–δ̂v
r–δ̂r

              (12)

where δ̂u, δ̂v, δ̂r are the approximate values of virtual control 
after dynamic surface filtering. The specific form of the dynamic 
surface is as follows:

               μ1δ̇̂u + δ̂u = δu

 μ2δ̇̂v + δ̂v = δv              (13)

               μ3δ̇̂r + δ̂r = δr

where μ1, μ2, μ3 are positive definite filter parameters.
According to the finite-time function π(t*), the tracking 

error in Eq. (12) is converted as follows:

                 ũ = πu ue

 ṽ = πv ve                  (14)

                 r̃ = πr re

Taking the time derivative of Eq. (14), we obtain:

  u̇̃ =π̇uue+πu(u̇–δ̇̂u)=πu[ωuue+fu(v)+m11

1 (Fτu+Fdu)–δ̇̂u]
 v̇̃ =π̇vve+πv(v̇–δ̇̂v)=πv[ωvve+fv(v)+m22

1 (Fτv+Fdv)–δ̇̂v]
  ṙ̃ =π̇rre+πr(ṙ–δ̇̂r)=πr[ωrre+fr(v)+m33

1 (Fτr+Fdr)–δ̇̂r]
(15)

where fu(v), fv(v), fr(v) are unmeasurable. We use RBFNNs to 
reconstruct it. The specific process is as follows:
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where

ω–u=max{|πx
2cos(ψ)|,|ωu|,||Wu

T||,|εu+m11
–1F∂u+m11

–1Fdu–δ̇̂u|},

ω–v=max{|πv
2cos(ψ)|,|ωv|,||Wv

T||,|εv+m22
1F∂v+m22

–1Fdv–δ̇̂v|},

ω–r=max{|πx
2|,|ωr|,||Wr

T||,1},  αu=|xe|+|ue|+||Su(v)||+1,

αv=|ye|+|ue|+||Sv(v)||+1,  αr=|ψe|+|re|+||Sr(v)||+1.

Based on this, the following control law is designed for the 
MSV automatic berthing system:

             τu = –ϕ4ueη̂u–ω–̂uαuue

 τv = –ϕ5veη̂v–ω–̂vαvve            (22)

             τr = –ϕ6reη̂r–ω–̂rαrre

and the adaptive law 

              η̇̂u = γ11(ϕ4ue
2–γ12η̂u)

 η̇̂v = γ21(ϕ5ve
2–γ22η̂v)            (23)

              η̇̂r = γ31(ϕ6re
2–γ32η̂r)

               ω–̇̂u = λ11(ue
2αu– λ12ω–̂u)

 ω–̇̂v = λ21(ve
2αv– λ22ω–̂v)           (24)

               ω–̇̂r = λ31(re
2αr– λ32ω–̂r)

where ϕ4, ϕ5, ϕ6, γ11, γ21, γ31, γ12, γ22, γ32, λ11, λ21, λ31, λ12, λ22, λ32 
are positive definite parameters; η̂u, η̂v, η̂r, ω–̂u, ω–̂v, ω–̂r are estimates 
of ηu, ηv, ηr, ω–u, ω–v, ω–r; and ηu=F∂u

–1, ηv=F∂v
–1, ηr=F∂r

–1.
We choose the following Lyapunov function for the closed-

loop system:

Mv=Lv+1
2γ11

–1πu
2Fρuη̃u

2+1
2γ21

–1πv
2Fρvη̃v

2+1
2γ31

–1πr
2Fρrη̃r

2+

1
2λ11

–1πu
2Fρuω–̃u

2+1
2λ21

–1πv
2Fρvω–̃v

2+1
2λ31

–1πr
2Fρrω–̃r

2

(25)

where η̃u=ηu–η̂u, η̃v=ηv–η̂v, η̃r=ηr–η̂r, ω–̃u=ω–u–ω–̂u, ω–̃v=ω–v–ω–̂v, ω–̃r=ω–r–ω–̂r 
are estimation errors.

Taking the time derivative of Eq. (25), we get

Ṁv=≤–ϕ1πx
2xe

2–ϕ2πy
2ye

2–ϕ3πψ
2ψe

2+ueπu
2ω–uαu+ueπu

2Fρuτu+

veπv
2ω–vαv+veπv

2Fρvτv+reπr
2ω–rαr+reπr

2Fρrτr–

γ11
–1πu

2Fρuη̃uη̇̂u–γ21
–1πv

2Fρvη̃vη̇̂v–γ31
–1πr

2Fρrη̃rη̇̂r–

λ11
–1πu

2Fρuω–̃uω–̇̂u–λ21
–1πv

2Fρvω–̃vω–̇̂u–λ31
–1πr

2Fρrω–̃rω–̇̂r
  (26)

                fu(v) = Wu
TSu(v) + εu

 fv(v) = Wv
TSv(v) + εv          (16)

                fr(v) = Wr
TSr(v) + εr

where v is the input vector of the NNs; Su(v), Sv(v), Sr(v) are 
central functions; and Wu

T, Wv
T, Wr

T are the weights of the NNs.
The Lyapunov function is constructed as follows

Lv = 12x ̃ 2 + 12y ̃ 2 + 12 ψ̃ 2 + 12u ̃ 2 + 12v ̃ 2 + 12r ̃ 2    (17)

From the time derivative of Eq. (17), we have:

L̇v = –ϕ1πx
2xe

2– ϕ2πy
2ye

2– ϕ3πψ
2ψe

2+

ueπu
2[xeπx

2cos(ψ)+ωuue+fu(v)+ m11

1  (Fτu+Fdu)–δ̇̂u]+

veπv
2[yeπy

2cos(ψ)+ωvve+fv(v)+ m22

1  (Fτv+Fdv)–δ̇̂v]+

reπr
2[ψereπψ

2+ωrre+fr(v)+ m33

1  (Fτr+Fdr)–δ̇̂r]
(18)

Substituting Eqs. (3) and (16) into Eq. (18), and combining 
the MLP technology, we obtain

L̇v=–ϕ1πx
2xe

2–ϕ2πy
2ye

2–ϕ3πψ
2ψe

2+ueπu
2Pu+ueπu

2Fρuτu+

veπv
2Pv+veπv

2Fρvτv+reπr
2Pr+reπr

2Fρrτr      (19)
where 

Pu=xeπx
2cos(ψ)+ωuue+Wu

TSu(v)+εu+m11
–1F∂u+m11

–1Fdu–δ̇̂u,

Pv=yeπy
2cos(ψ)+ωvve+Wv

TSv(v)+εv+m22
–1F∂v+m22

–1Fdv–δ̇̂v,

Pr=ψeπψ
2+ωrre+Wr

TSr(v)+εr+m33
–1F∂r+m33

–1Fdr–δ̇̂r .

and 

   ||Pu||≤|xe||πx
2cos(ψ)|+|ωu||ue|+||Wu

T|| ||Su(v)||+

   |εu+m11
–1F∂u+m11

–1Fdu–δ̇̂u|

   ||Pv||≤|ye||πy
2cos(ψ)|+|ωv||ve|+||Wv

T|| ||Sv(v)||+

  |εv+m22
–1F∂v+m22

–1Fdv–δ̇̂v|

   ||Pr||≤|ψe||πψ
2|+|ωr||re|+||Wr

T|| ||Sr(v)||+

   |εr+m33
–1F∂r+m33

–1Fdr–δ̇̂r|
(20)

Then, Eq. (18) becomes

L̇v≤–ϕ1πx
2xe

2–ϕ2πy
2ye

2–ϕ3πψ
2ψe

2+ueπu
2ω–uαu+ueπu

2Fρuτu+

veπv
2ω–vαv+veπv

2Fρvτv+reπr
2ω–rαr+reπr

2Fρrτr    (21)
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Substituting Eqs. (22)–(24) into Eq. (26) gives

Ṁv≤–ϕ1πx
2xe

2–ϕ2πy
2ye

2–ϕ3πψ
2ψe

2–ϕ4πu
2ue

2–

ϕ5πv
2ve

2–ϕ6πr
2re

2+γ12πu
2Fρuη̃uη̂u+γ22πv

2Fρvη̃vη̂v+

γ32πr
2Fρrη̃rη̂r+λ12πu

2Fρuω–̃uω–̂u+λ22πv
2Fρvω–̃vω–̂v+

λ32ω–̂rπr
2Fρrω–̃r

(27)
From Young’s inequality, we obtain

Ṁv≤–ϕ1πx
2xe

2–ϕ2πy
2ye

2–ϕ3πψ
2ψe

2–ϕ4πu
2ue

2–

ϕ5πv
2ve

2–ϕ6πr
2re

2– 34 γ12πu
2Fρuη̃u

2+γ12Fρuπu
2–

3
4 γ22πv

2Fρvη̃v
2+γ22Fρvπv

2– 34 γ32πr
2Fρrη̃r

2+γ32Fρrπr
2–

3
4 λ12πu

2Fρuω–̃u
2+λ12Fρuπu

2– 34 λ22πv
2Fρvω–̃v

2+λ22Fρvπv
2–

3
4 λ32πr

2Fρrω–̃r
2+λ32Fρrπr

2

≤ кMv+ Mк

(28)
where
к = min{ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, 34γ12, 34γ22, 34γ32, 34λ12, 34λ22, 34λ32},

Mк=γ12Fρuπu
2+γ22Fρvπv

2+γ32Fρrπr
2+λ12Fρuπu

2+λ22Fρvπv
2+λ32Fρrπr

2.

Theorem 1. According to the assumptions introduced in this 
article, the automatic berthing control strategy developed based 
on TBG can allow the MSV to reach the expected target position 
(xd, yd, ψd)T within a finite time t*, and all signals in the closed-
loop system are bounded.
Proof: Solving Eq. (28) gives

Mv≤[Mv(0) – к
Mк]exp(–кt*) + к

Mк      (29)

where Mv(0) is the initial value of Mv.

Remark 1: From Eq. (40), we can see that Mv is bounded. 
Furthermore, according to Eqs. (17) and (25), we know that x̃, ỹ, 
ψ̃, ũ, ṽ, r̃, η̃u, η̃v, η̃r, ω–̃u, ω–̃v, ω–̃r are bounded. From the boundedness 
of x̃, ỹ, ψ̃, ũ, ṽ, r̃, we obtain the result that xe, ye, ψe, ue, ve, re are 
bounded. Since ue, ve, re are bounded, then δu, δv, δr are bounded. 
Finally, by combining Assumption 1, Assumption 2 and the 
properties of TBG, it can be concluded that all signals in the 
closed-loop system are bounded.
Remark 2: From Eq. (29), Mv ≤  к

Mк + Mv(0) can be obtained. Let 
EZ = ( x̃, ỹ, ψ̃)T; then 1

2||EZ|| ≤ Mv ≤  к
Mк  + Mv(0). It can then be 

shown that EZ ≤ √2[ к
Mк  + Mv(0)] . If we let Φ =√2[ к

Mк  + Mv(0)] , 
then ||Ep|| ≤ Φ. From Eq. (9), we can get

||Ep|| ≤ (1 – σ)Φ(t*) + σ Φ        (30)

From the properties of ω, we know that when t* ≥ Tv*, 
ω(0) = 0 then ||Ep|| ≤ σ Φ. Hence, the MSV will reach the target 

location within a finite time Tv*. Since ω is a TBG, the user 
can define the final value of the system and the predefined 
time Tv*offline. Hence, Tv* is predefined offline by the user. 
Finally, by combining Remark 1 and Remark 2, Theorem 1 
is proved.

SIMULATIONS

For the simulations, we used the model vessel parameters 
reported in [20]. Their specific values are shown in Table 1. 
The external disturbance suffered by the system was set to 
Fdu = 0.2 + 0.015[cos(–t) + sin(–0.5t)], Fdv = 0.002[sin(–0.15t) +  
0.5sin(–0.2t)], Fdr = 0.15 + 0.01[–sin(3t)] –2cos(t), and the 
system’s LOE faults were set to Fpu = 0.5 + 0.2exp(–0.1t), 
Fpv = 0.3 + 0.5exp(–0.2t), Fpr = 0.2 + 0.1exp(–0.1t). The bias 
faults were set to F∂u = 0.1 + 0.5cos(0.2t), F∂v = 0.2 + 0.3cos(0.1t),  
F∂r = 0.3 + 0.25sin(0.1t). The controller parameters were selected 
as ϕ = 0.2, ϕ2 = 0.1, ϕ3 = 0.8, μ1 = 0.01, μ2 = 0.01, μ3 = 0.02, 
ϕ4 = 0.5, ϕ5 = 1.2, ϕ6 = 0.6, γ11 = 0.3, γ21 = 0.5, γ31 = 0.1, γ12 = 0.03,  
γ22 = 0.07, γ32 = 0.01, λ11 = 1, λ21 = 3, λ31 = 2.1, λ12 = 0.01, λ22 = 0.05, 
λ32 = 0.01.

Tab. 1. Model parameters
Pa

ra
m

et
er

Va
lu

e

Pa
ra

m
et

er

Va
lu

e

Pa
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m11 25.8 d11 0.725 du −1.33

m22 33.8 d22 0.89 dv −36.47

m33 2.76 d33 −1.9 dr −0.75

The results obtained from the simulation experiment are 
shown in Figs. 1 to 6. From Fig. 1, we see that in a complex 
environment where actuator faults and internal and external 
dynamic factors are affected, the MSV can successfully reach 
the established berth within a finite time. This proves that the 
proposed control scheme has excellent fault adaptability and 
efficient operation capabilities. Fig. 2 shows the evolution of the 
MSV’s actual position and heading angle over time. It can be 
observed that the MSV’s lateral position successfully reached 
the predetermined berth after 18 s, while a precise berthing was 
achieved after 133 s by finely adjusting the propeller power to 
alter its longitudinal position. In addition, the heading angle of 
the MSV eventually stabilised at 90° as time progressed, and no 
overshoot was experienced during the berthing process. This 
indicates the excellent steady-state performance of the system 
under this control scheme. 

Fig. 3 shows that the system speeds reach sTable values at 10 s, 
30 s, and 40 s, respectively. This indicates that the system can 
use the inherent inertia of the MSV to complete the remaining 
navigation operations, and demonstrates the excellent dynamic 
response characteristics of the system under this control scheme. 
Fig. 4 shows the changes in the system control input. The 
control input eventually stabilises to within a relatively small 
interval as time progresses, which verifies the effectiveness of 
the control strategy and the high level of adaptability of the 

1
2
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system. Fig. 5 shows the dynamic changes in the LOE failure 
factor compensation process. Over time, this compensation 
mechanism effectively combats the adverse effects caused by 
LOE failures, which ensures safety during berthing. Fig. 6 shows 
the performance of the approximator in estimating uncertain 
dynamics. We can see that the approximator can accurately 
estimate the system dynamics under the influence of complex 
environmental factors, which further confirms the effectiveness 
of the proposed control scheme in handling uncertain dynamics. 
In summary, the MSV successfully completed the berthing task 
using the control scheme designed in this article.

CONCLUSION

In this paper, we have addressed the issue of the dynamics 
of internal and external uncertainties faced by vessels in 

port-restricted waters and the effects of actuator faults. We 
also developed and verified an efficient TBG-based finite-time 
fault-tolerant ABC scheme, in which RBFNNs were used to 
reconstruct the uncertainty dynamics accurately within the 
system, and MLP was used to transform the system’s internal 
and external deterministic dynamics and bias faults into a neural 
single-parameter learning model. Subsequently, a robust adaptive 
technique incorporating depth information was used to establish 
an online approximator to estimate an upper bound consistent 
with uncertain dynamics. Through the use of DSC technology, 
the complexity of the virtual control derivative calculation was 
reduced. A predetermined finite time function based on time 
TBG ensured the finite time convergence of the system. Finally, 
we verified the effectiveness of the control scheme through 
simulation experiments. The proposed control scheme was 
found to meet the requirements for accurate berthing under 
the influence of actuator faults and uncertain dynamics.

Fig. 1. Trajectory of the MSV in (x, y) -plant

Fig. 3. Curves of the surge velocity u, sway velocity v and yaw rate r

Fig. 5. Curves of η̂u, η̂v, η̂r

Fig. 2. Curves of the actual position and heading angle

Fig. 4. Curves for the control input

Fig. 6. Curves of ω–̂u, ω–̂v, ω–̂r
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