Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 23, nr 3 | 493--503
Tytuł artykułu

Influence of parameterization of soil processes on meteorological forecasts of vertical profiles

Autorzy
Warianty tytułu
PL
Wpływ parametryzacji procesów glebowych na prognozy meteorologiczne profili pionowych
Języki publikacji
EN
Abstrakty
EN
Soil and atmosphere boundary layer (ABL) interact with each other and influence physical processes in soil and atmosphere. Quality of numerical weather forecast depends on good mapping of complex soil process (microphysics processes in soil, fluid dynamics in porous media, soil dynamics, water cycle in soil and soil-plant-water relation, thermal processes in the soil etc.) in parameterization soil schemes. Current parameterizations of soil physical processes in TERRA_ML (multilayer soil module of the COSMO meteorological model) were prepared 30 years ago for numerical model with poor resolution. Nowadays operationally numerical models work with much better resolution. So, previous parameterization must have been improved or prepared from the beginning if it is expected improvement quality of numerical weather forecast. The influence of changing parameterization of water flux through the soil for “bare soil” case on vertical meteorological profiles is presented in this paper. This influence can be seen not only in weather forecasts, but also in any areas where the results of meteorological model(s) are used, like decision support systems in emergency situations or modeling of dispersion of air pollutants.
Wydawca

Rocznik
Strony
493--503
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
autor
  • Institute of Meteorology and Water Management - National Research Institute, ul. Podleśna 61, 01-673 Warszawa, Poland
autor
  • Institute of Meteorology and Water Management - National Research Institute, ul. Podleśna 61, 01-673 Warszawa, Poland, andrzej.mazur@imgw.pl
Bibliografia
  • [1] Kędziora A. Podstawy agrometeorologii (Introduction to Agrometeorology). Poznań: PWRiL; 2008.
  • [2] Stensrud DJ. Parameterization Schemes - Keys to Understanding Numerical Weather Prediction Models. Cambridge: Cambridge University Press; 2007. DOI: 10.1017/CBO9780511812590.]
  • [3] Moene AF, van Dam JC. Transport in the Atmosphere-Vegetation-Soil Continuum. Cambridge: Cambridge University Press; 2014. DOI: 10.1017/CBO9781139043137.
  • [4] Vila-Guerau de Arellano J, Van Heerwaarden CC, Van Stratum BJH, Van den Dries K. Atmospheric Boundary Layer. New York: Cambridge University Press; 2015. DOI: 10.1017/CBO9781316117422.
  • [5] Doms G, Foerstner J, Heise E, Herzog HJ, Mironow D, Raschendorfer M, Reinhart T. A Description of the Nonhydrostatic Regional COSMO Model. Part II: Physical Parameterization’, Tech. Rep., DWD, 2011. http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf (access: 11.12.2015).
  • [6] Stull RB. An Introduction to Boundary Layer Meteorology. Springer, USA; 1988. DOI: 10.1007/978-94-009-3027-8.
  • [7] Garrat JR. The Atmospheric Boundary Layer. Cambridge: Cambridge University Press, USA; 1992. DOI: 10.1002/qj.49712051919.
  • [8] Pielke RA. Mesoscale Meteorological Modeling. San Diego: Academic Press; 2002. Vol. 78. DOI: 10.1256/00359000260384389.
  • [9] Hillel D. Environmental Soil Physics. London: Academic Press; 1998.
  • [10] Hillel D. Introduction to Environmental Soil Physics. Amsterdam: Elsevier Science, The Netherlands; 2004.DOI: 10.1111/j.1365-2389.2005.0756d.x.
  • [11] Hillel D. Soil in the Environment. Crucible of Terrestrial Life. London: Academic Press; 2008. DOI: 10.1002/ieam.5630040427.
  • [12] Bear J. Dynamics of Fluids in Porous Media. New York, USA: Dover Publications; 1972. DOI: 10.1017/S0022112073210662.
  • [13] Bear J, Cheng AH-D. Modeling Groundwater Flow and Contaminant Transport. Dordrecht, The Netherlands: Springer; 2010. DOI: 10.1007/978-1-4020-6682-5.
  • [14] Novak V. Evapotranspiration in the Soil-Plant-Atmosphere System. Dordrecht, The Netherlands: Springer; 2012. DOI: 10.1007/978-94-007-3840-9.
  • [15] Dickinson RE. Modeling evapotranspiration for three-dimensional global climate models. In: Climate Processes and Climate Sensitivity. Hansen JE, Takahashi T, editors. Washington D.C.: Geophysical Monograph 29, 1984, Volume 5, pp. 58-72. DOI: 10.1029/GM029p0058.
  • [16] Warrick AW. Soil Water Dynamics. Oxford, UK: Oxford University Press Inc; 2003. DOI: 10.1023/B:ENVR.0000046450.62059.62.
  • [17] Rose C. An Introduction to the Environmental Physics of Soil, Water and Watersheds. Cambridge: Cambridge University Press; 2004. DOI: 10.1111/j.1365-2389.2004.0694c.x.
  • [18] Hanks RJ. Applied Soil Physics-Soil Water and Temperature Application, 2nd Edition, New York. USA: Springer-Verlag; 1992. DOI: 10.1007/978-1-4612-2938-4.
  • [19] Bittelli M, Campbell GS, Tomei F. Soil Physics with Python: Transport in the Soil-Plant-Atmosphere System. Oxford, UK: Oxford University Press; 2015. DOI: 10.1093/acprof:oso/9780199683093.001.0001.
  • [20] Duniec G, Mazur A. Modified Description of Soil Processes vs. Quality of Numerical Weather Forecasts - “Bare” Soil Case. Ecol Chem Eng S. 2015;22(4):659-673. DOI: 10.1515/eces-2015-0040.
  • [21] Radcliffe DE, Simunek J. Soil Physics with HYDRUS - Modeling with Applications. Boca Raton. Florida, USA: CRC Press; 2010.
  • [22] http://weather.uwyo.edu/upperair/sounding.html.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-11668a34-e827-47fb-963b-5c9a82c64df1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.