Warianty tytułu
Języki publikacji
Abstrakty
The ionosphere is the main error source in GNSS measurements and in extreme cases can degrade the positioning significantly, with errors exceeding 100 m; therefore, modelling and predicting of this type of error is crucial and critical. The ionospheric effect can be reduced using different techniques, such as dual-frequency receiver or suitable augmentation system (DGPS, SBAS); the aforesaid approaches involve the use of expensive devices and/or complex architectures. Single frequency stand-alone receivers are the cheapest and most widespread GNSS devices; they can estimate and partially correct the error due to the ionosphere, through adequate algorithms, which use parameters broadcasted by the navigation message. The aim of this paper is performance assessment of the ionospheric model NeQuick, adopted by the European GNSS Galileo for single frequency receivers. The analysis is performed in measurements domain and the data are collected in different geographical locations and in various geomagnetic conditions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1457--1476
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
- Department of Applied Sciences, PArthenope Navigation Group (PANG), “Parthenope” University of Naples, Napoli, Italy
autor
- Department of Applied Sciences, PArthenope Navigation Group (PANG), “Parthenope” University of Naples, Napoli, Italy, salvatore.gaglione@uniparthenope.it
autor
- Department of Applied Sciences, PArthenope Navigation Group (PANG), “Parthenope” University of Naples, Napoli, Italy
autor
- Department of Applied Sciences, PArthenope Navigation Group (PANG), “Parthenope” University of Naples, Napoli, Italy
autor
- Department of Applied Sciences, PArthenope Navigation Group (PANG), “Parthenope” University of Naples, Napoli, Italy
Bibliografia
- 1. Angrisano, A., S. Gaglione, C. Gioia, U. Robustelli, and M. Vultaggio (2012), GIOVE satellites pseudorange error assessment, J. Navigation65, 1, 29-40, DOI: 10.1017/S0373463311000270.
- 2. Azpilicueta, F., B. Nava, P. Coïsson, C. Brunini, and S.M. Radicella (2003), Opti-mized NeQuick ionospheric model for point positioning. In:Proc. Inter. Symp. on GPS/GNSS, 15-18 November 2003, Tokyo, Japan.
- 3. Bassiri, S., and G.A. Hajj (1992), Modeling the GPS signal propagation through the ionosphere, TDA Progress Report 42-110.
- 4. Bidaine, B., M. Lonchay, and R. Warnant (2013), Galileo single frequency ionospheric correction: performances in terms of position, GPS Solut.17, 1, 63-73, DOI: 10.1007/s10291-012-0261-0.
- 5. Bilitza, D., and B.W. Reinisch (2008), International Reference Ionosphere 2007: Improvements and new parameters, J. Adv. Space Res.42, 4, 599-609, DOI: 10.1016/j.asr.2007.07.048.
- 6. Blaunstein, N., and E. Plohotniuc (2008), Ionosphere and Applied Aspects of Radio Communication and Radar, CRC Press, Taylor & Francis Group, New York.
- 7. Brent, R.P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs.
- 8. Coïsson, P., S.M. Radicella, R. Leitinger, and B. Nava (2006), Topside electron den-sity in IRI and NeQuick: Features and limitations, Adv. Space. Res.37, 5, 937-942, DOI: 10.1016/j.asr.2005.09.015.
- 9. Daniell, R.E., L.D. Brown, D.N. Anderson, M.W. Fox, P.H. Doherty, D.T. Decker, J.J. Sojka, and R.W. Schunk (1995),Parameterized ionospheric model: A global ionospheric parameterization based on first principles models, Radio Sci.30, 5, 1499-1510, DOI: 10.1029/95RS01826.
- 10. Di Giovanni, G., and S.M. Radicella (1990), An analytical model of the electron density profile in the ionosphere, Adv. Space Res. 10, 11, 27-30, DOI: 10.1016/0273-1177(90)90301-F.
- 11. Gaglione, S., A. Angrisano, G. Pugliano, U. Robustelli, R. Santamaria, and M. Vultaggio (2011), A stochastic sigma model for GLONASS satellite pseudorange, Appl. Geomat.3, 1, 49-57, DOI: 10.1007/s12518-011-0046-0.
- 12. Hargreaves, J.K. (1992), The Solar-Terrestrial Environment, Cambridge Atmos-pheric and Space Science Series, Cambridge University Press, Cambridge.
- 13. Hochegger, G., B. Nava, S. Radicella, and R. Leitinger (2000), A family of ionospheric models for different uses, Phys. Chem. Earth C25, 4, 307-310, DOI: 10.1016/S1464-1917(00)00022-2.
- 14. Hoffmann-Wellenhof, B., H. Lichtenegger, and J. Collins (1992), Global Position-ing System: Theory and Practice, Springer, New York.
- 15. IS-GPS-200 (2004), Navstar GPS space segment/navigation user interfaces, Revi-sion D, ARINC Research Corporation, El Segundo, USA.
- 16. Kaplan, E.D., J.L. Leva, D. Milbert, and M.S. Pavloff (2006), Fundamentals of sat-ellite navigation. In:E.D. Kaplan and C.J. Hegarty (eds.), Understanding GPS. Principles and Applications, 2nd ed., Artech House Inc., Norwood, 21-65.
- 17. Klobuchar, J.A. (1987), Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerospace Electron. Sys. AES-23, 3, 325-331.
- 18. Leitinger, R., M.L. Zhang, and S.M. Radicella (2005), An improved bottomside for the ionospheric electron density model NeQuick, Ann. Geophys. 48, 3, 525-534.
- 19. Liu, J., R. Chen, Z. Wang, and H. Zhang (2011), Spherical cap harmonic model for mapping and predicting regional TEC, GPS Solut.15, 2, 109-119, DOI: 10.1007/s10291-010-0174-8.
- 20. Llewllyn, S.K., and R.B. Bent (1973), Documentation and description of the Bent ionospheric model, SAMSO Technical Report 73-252.
- 21. Massaro, M. (2011), Confronto tra modelli ionosferici nel posizionamento GNSS in singola frequenza, M.Sc. Thesis, “Parthenope” University of Naples, Naples, Italy (in Italian).
- 22. Memarzadeh, Y. (2009), Ionospheric modeling for precise GNSS applications, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.
- 23. Menvielle, M., and A. Berthelier (1991), The K-derived planetary indices: Descrip-tion and availability, Rev. Geophys. 29, 3, 415-432, DOI: 10.1029/ 91RG00994.
- 24. Nava, B., P. Coïsson, G.M. Amarante, F. Azpilicueta, and S.M. Radicella (2005), A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion, Ann. Geophys. 48, 2, 313-320.
- 25. Nava, B., P. Coïsson, and S.M. Radicella (2008), A new version of the NeQuick ionosphere electron density model, J. Atmos. Solar-Terr. Phys.70, 15, 1856-1862, DOI: 10.1016/j.jastp.2008.01.015.
- 26. Parkinson, B.W. (1996), GPS error analysis. In: B.W. Parkinson and J.J. Spilker (eds.), Global Positioning System: Theory and Applications, American In-stitute of Aeronautics and Astronautics Inc., Washington, 469-483.
- 27. Petit, G., and B. Luzum (2010), IERS conventions (2010), IERS Technical Note No. 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt, 137-150.
- 28. Radicella, S.M. (2009), The NeQuick model genesis, uses and evolution, Ann. Geophys.52, 3/4, 417-422.
- 29. Radicella, S.M., and R. Leitinger (2001), The evolution of the DGR approach to model electron density profiles, Adv. Space Res.27, 1, 35-40, DOI: 10.1016/S0273-1177(00)00138-1.
- 30. Radicella, S.M., and M.L. Zhang (1995), The improved DGR analytical model of electron density height profile and total electron content in the ionosphere, Ann. Geophys. 38, 1, 35-41.
- 31. Radicella, S.M., R. Leitinger, B. Nava, and P. Coïsson (2003), A flexible 3D ionospheric model for satellite navigation applications. In: Proc. Int. Symp. on GPS/GNSS, Tokyo, Japan, 2003, 305-310.
- 32. Rawer, K. (1963), Propagation of decameter waves (h.f. band). In: B. Landmark (ed.), Meteorological and Astronomical Influences on Radio Wave Propagation, Pergamon Press Inc., Oxford.
- 33. Rawer, K. (1982), Replacement of the present sub-peak plasma density profile by a unique expression, Adv. Space Res.2, 10, 183-190, DOI: 10.1016/0273-1177(82)90387-8.
- 34. Schaer, S., W. Gurtner, and J. Feltens (1998), IONEX: The IONosphere map eXchange, format version 1. In: Proc. IGS AC Workshop, 9-11 February 1998, Darmstadt, Germany.
- 35. Schluter, S., Y. Beniquel, C. Bourga, B. Arbesser-Rastburg, N. Jakowski, F. Amarillo, D. Klahn, and T. Noack (2004), Ionosphere related contribution of the atmospheric processing and assessment facility to gstb-v1. In: Proc. European Navigation Conference, 16-19 May 2004, Rotterdam, The Netherlands.
- 36. SIS-ICD (2006), Galileo OpenService Signal, Space Interface Control Document, SISICD-2006, European Space Agency.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-11408bc3-451d-45c4-a2ef-d46945c57c0a