Czasopismo
2023
|
R. 99, nr 2
|
218--221
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Modelowanie rozkładu temperatury w anatomicznym modelu guza piersi kobiecej
Języki publikacji
Abstrakty
The paper aims at the temperature distribution modelling in anatomically correct female breast cancer model using modified Pennes bioheat equation. In our case, a heat transfer in the tumor tissue was considered using different perfusion models i.e. constant, linear and non-linear temperature-dependent blood perfusion model. These temperature-dependent models have been applied in order to account for the strong temperature dependence due to bioregulatory processes inside naturalistic irregular shaped breast tumor. It was found that the temperature patterns distributions do not strongly depend on the perfusion model but they have an impact on temperature rise and its value.
Praca ma na celu modelowanie rozkładu temperatury w anatomicznym modelu guza piersi kobiecej przy użyciu zmodyfikowanego równania biocieplnego Pennesa. W naszym przypadku rozważano przenoszenie ciepła w tkance guza przy użyciu różnych modeli perfuzji krwi zależnych od temperatury, a mianowicie: stałego, liniowego i nieliniowego. Modele te zostały zastosowane w celu uwzględnienia silnej zależności od temperatury spowodowanej procesami bioregulacyjnymi wewnątrz naturalistycznego guza piersi o nieregularnym kształcie. Autorzy wykazali, że rozkłady temperatur nie zależą silnie od modelu perfuzji, ale mają wpływ na wzrost temperatury i jej wartość.
Czasopismo
Rocznik
Tom
Strony
218--221
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- University of Life Sciences in Lublin, Department of Applied Mathematics and Computer Sciences, ul. Akademicka 13, 20-950 Lublin, Poland, arek.miaskowski@up.lublin.pl
autor
- AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Krakow, Poland, piotr.gas@agh.edu.pl
Bibliografia
- [1] Siegel R.L., et al., Cancer statistics, 2021, CA: A Cancer Journal for Clinicians, 71 (2021), No. 1, 7–33.
- [2] Gas P., Miaskowski A., Subramanian M., In silico study on tumor-size-dependent thermal profiles inside an anthropomorphic female breast phantom subjected to multi dipole antenna array, International Journal of Molecular Sciences, 21 (2020), No. 22, 8597. DOI:10.3390/ijms21228597,
- [3] Sawicki B., Miaskowski A., Nonlinear higher-order transient solver for magnetic fluid hyperthermia, Journal of Computational and Applied Mathematics, 270 (2014), 143–151.
- [4] Minnaar C.A., Szasz A., Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field, Cells, 11 (2022), 1838.
- [5] Gas P., Temperature inside tumor as time function in RF hyperthermia, Przeglad Elektrotechniczny, 86 (2010), No. 12, 42–45.
- [6] Syrek P., et al., Eddy Currents Distribution in Upper Extremities During Magnetotherapy, In: 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), IEEE, (2019), 1–4. DOI: 10.1109/ATEE.2019.8724967
- [7] Carrey B., et al., Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, Journal of Applied Physics, 109 (2011), No. 8, 083921.
- [8] Miaskowski A. Subramanian M., Numerical Model for Magnetic Fluid Hyperthermia in a Realistic Breast Phantom: Calorimetric Calibration and Treatment Planning, International Journal of Molecular Sciences, 20 (2019), No. 18, 4644.
- [9] Geyikoglu M.D., Cavusoglu B.,Microwave hyperthermia with X band flexible hyperthermia applicator for bone and jointcancer treatment, Journal of Electromagnetic Waves and Applications, 36 (2022), No. 9, 1285–1297.
- [10] Kologeropoulos A., Tsitsas N., Excitation of a layered medium by N sources: Scattering relations, interaction cross sections and physical bounds, Quarterly of Applied Mathematics, 79 (2021), pp. 335–356.
- [11] Portosi V., et al., Feasibility investigation of low-cost microwave needle applicator for thermal ablation cancer therapy, In: 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE, (2021), 1–6.
- [12] Lopez J.I., et al., Estimation of Electrical Conductivity from Radiofrequency Hyperthermia Therapy for Cancer Treatment by Levenberg Marquardt Method, Communications in Computer and Information Science, 1195 (2020), 142–154.
- [13] Nizam-Uddin N., et al., Towards an efficient system for hyperthermia treatment of breast tumors, Biomedical Signal Processing and Control, 71 (2022), 103084.
- [14] Suseela S., Wahid P., Breast cancer hyperthermia using a grid array applicator, In: 2020 SoutheastCon, (2020), 1–4.
- [15] Ling W.V., et al., SAR distribution of non-invasive hyperthermia with microstrip applicators on different breast cancer stages, Indonesian Journal of Electrical Engineering and Computer Science, 22 (2021), 232–240.
- [16] Ashour A.S., et al., Optimal power for microwave slotted probes in ablating different hepatocellular carcinoma sizes, Computers in Biology and Medicine, 127 (2020), 104101.
- [17] Radmilovic-Radjenovic M., el al., Finite element analysis of the effect of microwave ablation on the liver, lung, kidney, and bone malignant tissues, EPL, 136 (2021), 28001.
- [18] Trujillo-Romero C.J., et al., Double Slot Antenna for Microwave Thermal Ablation to Treat Bone Tumors: Modeling and Experimental Evaluation, Electronics, 10 (2021), 761.
- [19] Aziz O.A.A., et al., Superparamagnetic iron oxide nanoparticles (SPIONs): preparation and recent applications, Journal of Nanotechnology Advanced Material, 8 (2020), No. 1, 21–29.
- [20] Orrico A., et al., Controlled photothermal therapy based on temperature monitoring: theoretical and experimental analysis, In: 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE, (2021), 1–6.
- [21] Oehlsen O. et al., Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives, ACS Omega, 7 (2022), No. 4, 3134–3150.
- [22] Theodosiou M., et al., Iron oxide nanoflowers encapsulated in thermosensitive fluorescent liposomes for hyperthermia treatment of lung adenocarcinoma, Scientific Reports, 12 (2022), No. 1, 1–15.
- [23] Szczech M., Experimental studies of magnetic fluid seals and their influence on rolling bearings, Journal of Magnetics, 25 (2020), No. 1, 48–55.
- [24] Yu X., et al., Effect of chromium ion substitution of ZnCoferrites on magnetic induction heating, Journal of Alloys and Compounds, 830 (2020), 154724.
- [25] Paruch M., Sensitivity analysis and the inverse problem inthe mathematical modelling of tumor ablation using the interstitial hyperthermia. AIP Conference Proceedings, 2239 (2020), No. 1, 020038. DOI: 10.1063/5.0007828
- [26] Michalowska-Samonek J., et al., Numerical analysis of high frequency electromagnetic field distribution and specific absorption rate in realistic breast models, Przeglad Elektrotechniczny, 88 (2012), No. 12b, 97–99.
- [27] Neto C.D., et al., A simplified mathematical model to predict the human breast thermal response, 26th International Congress of Mechanical Engineering (COBEM 2021), IEEE, (2021), 1070.
- [28] Polychronopoulos N.D., et al., A Computational Study on Magnetic Nanoparticles Hyperthermia of Ellipsoidal Tumors, Applied Sciences, 11 (2021), 9526.
- [29] Byrd B.K., et al., The shape of breast cancer, Breast Cancer Research and Treatment, 183 (2020), 403–410.
- [30] Gas P., Miaskowski A., Dobrowolski D., Modelling the tumor temperature distribution in anatomically correct female breast phantom, Przeglad Elektrotechniczny, 96 (2020), No. 2, 146–149. DOI: 10.15199/48.2020.02.35
- [31] Raouf I., Gas P., Kim H.S., Numerical Investigation of Ferrofluid Preparation during In-Vitro Culture of Cancer Therapy for Magnetic Nanoparticle Hyperthermia, Sensors, 21 (2021), 5545. DOI: 10.3390/s21165545
- [32] Pennes H.H., Analysis of tissue and arterial blood temperature in the resting human forearm, Journal of Applied Physiology, 1 (1948), No. 2, 93–122.
- [33] Kengne E., et al., A mathematical model to solve bio-heat transfer problems through a bio-heat transfer equation with quadratic temperature-dependent blood perfusion under a constant spatial heating on skin surface, Journal of Biomedical Science and Engineering, 7 (2014), No. 9, pp. 721–730.
- [34] Lang B., et al., Impact of nonlinear heat transfer on temperature control in regional hyperthermia, IEEE Transactions on Biomedical Engineering, 46 (1999), No. 9, 1129–1138.
- [35] Rosensweig R.E., Heating magnetic fluid with alternating magnetic field, Journal of Magnetism and Magnetic Materials, 252 (2002), 370–374.
- [36] Sim4Life, Sim4Life Manual, Realise 6.2., (2021)
- [37] Neira L.M., et al., Human breast phantoms: Test beds for the development of microwave diagnostic and therapeutic technologies, IEEE Pulse, 8 (2017), No. 4, 66–70.
- [38] Hasgall P.A., et al., IT'IS Database for thermal and electromagnetic parameters of biological tissues, Version 4.1, Feb 22, 2022.
- [39] Tang Y.D., Effect of injection strategy for nanofluid transport on thermal damage behavior inside biological tissue during magnetic hyperthermia, International Communications in Heat and Mass Transfer, 133 (2022), 105979.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1112ebeb-0026-4fcd-9f47-5ca425fe115b