Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 4 | 21--30
Tytuł artykułu

Hydrodynamic characteristics of the Pusher, Tractor and Schottel types of the AZIPOD propulsion system

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of this paper is to investigate the hydrodynamics performance of the three types (pusher, tractor and Schottel) of the azimuthing podded drive (AZIPOD) electric propulsion system. To evaluate the propulsive performance of the podded drive system, the Reynolds-Averaged Navier Stokes (RANS) solver is employed. KP-505 propeller as the research object, hydrodynamic open-water characteristics of this propeller was first calculated, and agreed well with test results. Then, numerical simulation of the thrust, torque and efficiency of the three types of the AZIPOD systems (Pusher, Tractor and Schottel) with KP-505 propeller at various yaw angles (from -30° to +30° with 15° increments) and different advance coefficients were compared. For the Schottel propulsion system, the effects of the number of propeller blades and the blade pitch-diameter ratio on performance are presented and discussed. Finally, the effect of sturt, support element and pod for pusher type on the pressure coefficient, thrust and torque of one blade and whole blades is investigated during one cycle.
Wydawca

Rocznik
Tom
Strony
21--30
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Amirkabir University of Technology, Iran
autor
  • Harbin Institute of Technology, China
autor
  • Khorramshahr Univ. of Marine Science and Tech, Iran
Bibliografia
  • 1. Shamsi R, Ghassemi H, Molyneux D, Liu P. Numerical hydrodynamic evaluation of propeller (with hub taper) and podded drive in azimuthing conditions. Ocean Engineering 2014;76. https://doi.org/10.1016/j.oceaneng.2013.10.009.
  • 2. Berchiche N, Krasilnikov V. I, Koushan K. Numerical analysis of azimuth propulsor performance in seaways: Influence of oblique inflow and free surface. J Mar Sci Eng 2018;6. https://doi.org/10.3390/jmse6020037.
  • 3. Hu J, Zhao W, Chen C. G, Guo C. Numerical simulation on the hydrodynamic performance of an azimuthing pushing podded propulsor in reverse flow and rotation.
  • Applied Ocean Research 2020;104. https://doi.org/10.1016/j.apor.2020.102338.
  • 4. Shamsi R, Ghassemi H. Hydrodynamic analysis of puller and pusher of azimuthing podded drive at various yaw angles. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment 2014;228. https://doi.org/10.1177/1475090213481417.
  • 5. Fan X, Tang J. J, Zhang Y. X, Sun H. S, Gu Y. Q, Zhang J. X. Numerical investigation of the ship propeller load under reversed propulsion condition. Journal of Hydrodynamics 2021;33. https://doi.org/10.1007/s42241-021-0024-x.
  • 6. SCHOTTEL. SCHOTTEL -schottel.de/en/home . (accessed online 10 Aug 2024).
  • 7. Ghassemi H, Ghadimi P. Computational hydrodynamic analysis of the propeller-rudder and the AZIPOD systems. Ocean Engineering 2008;35. https://doi.org/10.1016/j.oceaneng.2007.07.008.
  • 8. Huuva T, Tornros S. Computational fluid dynamics simulation of cavitating open propeller and azimuth thruster with nozzle in open water. Ocean Engineering 2016;120. https://doi.org/10.1016/j.oceaneng.2015.11.001.
  • 9. Shamsi R, Ghassemi H. Numerical investigation of yaw angle effects on propulsive characteristics of podded propulsors. International Journal of Naval Architecture and Ocean Engineering 2013;5. https://doi.org/10.3744/JNAOE.2013.5.2.287.
  • 10. Reichel M. Manoeuvring forces on azimuthing podded propulsor model. Polish Maritime Research 2007; 14:3–8. https://doi.org/10.2478/v10012-007-0006-0.
  • 11. Liu P, Islam M, Veitch B. Unsteady hydromechanics of a steering podded propeller unit. Ocean Engineering 2009;36. https://doi.org/10.1016/j.oceaneng.2009.05.012.
  • 12. Guo C. Y, Ma N, Yang C. J. Numerical Simulation of a Podded Propulsor in Viscous Flow. Journal of Hydrodynamics 2009;21. https://doi.org/10.1016/S1001-6058(08)60120-1.
  • 13. Amini H, Sileo L, Steen S. Numerical calculations of propeller shaft loads on azimuth propulsors in oblique inflow. Journal of Marine Science and Technology (Japan) 2012;17. https://doi.org/10.1007/s00773-012-0176-z.
  • 14. Majumder J. Control of Ship Electrical Motor Propulsion. Https://InstrumentationtoolsCom/Speed-Control-of-Ship-Electrical-Motor-Propulsion 2024.
  • 15. Tu T. N. Numerical simulation of propeller open water characteristics using RANSE method. Alexandria Engineering Journal 2019;58. https://doi.org/10.1016/j.aej.2019.05.005.
  • 16. Shamsi R, Ghassemi H. Time-accurate analysis of the viscous flow around puller podded drive using sliding mesh method. Journal of Fluids Engineering, Transactions of the ASME 2015;137. https://doi.org/10.1115/1.4027143.
  • 17. Arief I. S, Musriyadi T. B, Je Mafera A. D. A. Analysis Effect of Duct Length– Nozzle Diameter Ratio and Tip Clearance Variation on the Performance of K-Series Propeller. International Journal of Marine Engineering Innovation and Research 2017;2. https://doi.org/10.12962/j25481479.v2i1.2527.
  • 18. Arief I. S, Baidowi A, Ulfa M. Thrust and Torque Analysis on Propeller C4-40 with The Addition of Kort Nozzle to Pitch Variation. International Journal of Marine Engineering Innovation and Research 2021;6. https://doi.org/10.12962/j25481479.v6i3.10631.
  • 19. Bernitsas MM, Ray D, Kinley P., KT, KQ and efficiency curves for the Wageningen B-series propellers. 237 1981.
  • 20. Carlton J. S. Marine propellers and propulsion. 2018. https://doi.org/10.1016/C2014-0-01177-X.
  • 21. National Maritime Research Institute (NMRI). https://www.t2015.nmri.go.jp/Instructions_KCS/instruction_KCS.html (accessed online 21 April 2024).
  • 22. Lee S, Paik K. J. URANS simulation of a partially submerged propeller operating under the bollard condition. Brodogradnja 2018;69. https://doi.org/10.21278/brod69107.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-10f90819-747c-4707-83a4-2788a758f831
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.