Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 21, no. 2 | 113--137
Tytuł artykułu

Study on the Spatial Distribution of Natural Fragments Based on Fractal Model of Fragment Mass Distribution

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to solve the problem of using fragment quantity spatial distribution to describe fragment spatial distribution, this paper proposes a fragment mass probability density model to describe fragment spatial distribution. Applying the idea of stress gradient and velocity gradient grade in the process of explosion, the calculation equation of fragment direction angle at different axial positions of warhead is established. Based on the fractal model of natural fragment mass distribution in the form of Weibull function, a two-dimensional joint probability density model of fragment scattering space angle and fragment mass is established, and the model is verified by tests. The research results show that when the space angle is between 90° and 100°, the theoretical calculation error of fragment mass distribution is 4.3%, and the theoretical calculation error of fragment quantity distribution is 19.4%, compared with the test results. This shows that the fragment mass spatial distribution is more suitable for characterizing the fragment spatial distribution law than the fragment quantity spatial distribution. When considering the characteristics of non-uniform fragment mass formed in different regions of warhead, the prediction accuracy of the fragment mass spatial distribution model established in this paper is 18.2% higher than that of previous models, which can more accurately reflect the fragment spatial distribution law.
Wydawca

Rocznik
Strony
113--137
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
  • Nanjing University of Science and Technology, China
autor
  • China Helicopter Research and Development Institute, China
Bibliografia
  • [1] Gurney, R.W. The Initial Velocities of Fragments from Bombs, Shell and Grenades. Ballistic Research Laboratories. Aberdeen Proving Ground, Report 405, US-MD, 1943.
  • [2] Lloyd, R. Conventional Warhead Systems Physics and Engineering Design. American Institute of Aeronautics and Astronautics Inc., 1998.
  • [3] Hutchinson, M.D. With-Fracture Gurney Model to Estimate both Fragment and Blast Impulses. Cent. Eur. J. Energ. Mater. 2010, 7(2):175-186.
  • [4] Mott, N.F. A Theory of the Fragmentation of Shells and Bombs. Fragmentation of Rings and Shells. Springer, Berlin/Heidelberg, 2006, pp. 243-294.
  • [5] Kipp, M.E.; Grady, D.E. Dynamic Fracture Growth and Interaction In One Dimension. J. Mech. Phys. Solids 1985, 33(4): 399-415; https://doi.org/10.1016/0022-5096(85)90036-5.
  • [6] Mott, N.F. A Theory of the Fragmentation of Shells and Bombs. In: Fragmentation of Rings and Shells: The Legacy of N.F. Mott. (Grady, D.E., Ed.) Springer, Heidelberg, Berlin, Germany, 2006, pp. 243-294.
  • [7] Held, M. Fragment Mass Distribution of HE Projectiles. Propellants Explos. Pyrotech. 1990, 15(6): 254-260; https://doi.org/10.1002/prep.19900150606.
  • [8] Zhu, J.J.; Li, W.B.; Wang, X.M.; Li, W.B. Effect of Tempering Temperature on Expansion and Fracture Mechanism of 40CrMnSiB Steel Cylinder Shell. Int. J. Impact Eng. 2017, 107: 38-46; https://doi.org/10.1016/j.ijimpeng.2017.05.007.
  • [9] Li, J.B.; Li, W.B.; Wang, X.M.; Li, W.B.; Hong, X.W. Mechanical Properties and Constitutive Model of Aluminum Powder/Rubber Matrix Composites Compressed at Various Strain Rates. Int. J. Impact Eng. 2018, 121: 55-62; https://doi.org/10.1016/j.ijimpeng.2018.07.005.
  • [10] Ma, T.; Yang, N.; Luo, Y.; Wang, Y.; Guo, G.; Wu, S.; Xu, S.; Wu, X. Effect of Aging on Damage Properties and Reaction Characteristics of Typical 2,4-Dinitroanisole (DNAN)-based Melt-cast Explosives under Low-velocity Impact. Propellants Explos. Pyrotech. 2023, 48(12): paper e202300094; https://doi.org/10.1002/prep.202300094.
  • [11] Zhu, J.J.; Yu, Z.; Yang, Y.; Li,; W.; Wang, X.; Li, W.; Qiao, X. Research on the Volume and Line Fractal Dimension of Fragments from the Dynamic Explosion Fragmentation of Metal Shells. Powder Technol. 2018, 331: 129-136; https://doi.org/10.1016/j.powtec.2018.01.084.
  • [12] Yang, Y.C. Study on Fractal Mathematical Models of Pulverizing Theory for Ore. Powder Technol. 2016, 288: 354-359; https://doi.org/10.1016/j.powtec.2015.10.050.
  • [13] Dhote, K.D. Statistics of Fragment Dispersion by Explosion in a Fragment Generator Warhead. Cent. Eur. J. Energ. Mater. 2016, 13(1): 183-197.
  • [14] Li, L.P. Investigation on some Key Measuring Technologies of Fragment Warhead Power Field. Doctoral dissertation, Nanjing University of Science and Technology, Nanjing, 2017.
  • [15] Huang, J.W. Study on Fragment Law of Fragment Warhead and Fragment Penetration Effect on Infantry Fighting Vehicle. Doctoral dissertation. Nanjing University of Science and Technology, Nanjing, 2014.
  • [16] Grisaro, H.Y.; Dancygier, A.N. Spatial Mass Distribution of Fragments Striking a Protective Structure. Int. J. Impact Eng. 2018, 112:1-14; https://doi.org/10.1016/j.
  • ijimpeng.2017.10.003.
  • [17] Karpp, R.R.; Predebon, W.W. Calculations of Fragment Velocities from Naturally Fragmenting Munitions. Proc. 1st Int. Symp. Ballistics, 1974, pp. 145-176.
  • [18] Wang, S.S. Terminal Effects. Science Press, Beijing, 2019.
  • [19] Huang, G.Y.; Li, W.; Feng, S.S. Axial distribution of Fragment Velocities from Cylindrical Casing under Explosive Loading. Int. J. Impact Eng. 2015, 76: 20-27; https://doi.org/10.1016/j.ijimpeng.2014.08.007.
  • [20] Zhu, J.J.; Li, W.B.; Wang, X.M.; Cheng, X.W.; Li, W.B.; Lu, H.T. Effect of Tempering Temperature on the Forming Properties of Fragments of 50SiMnVB Steel Shell. Acta Armamentarii 2015, 36(11): 2080-2086; https://doi.org/10.3969/j.issn.1000-1093.2015.11.009.
  • [21] Li, J.B.; Li, W.B.; Yu, J.X.; Xiao, W.; Xu, H.Y. Blast Performance of Layered Charges Enveloped by Aluminum Powder/Rubber Composites in Confined Spaces. Def. Technol. 2022, 18(4): 583-592; https://doi.org/10.1016/j.dt.2021.03.014.
  • [22] Alphin, H.E. Research and Development of Material. Engineering Design Handbook. Headquarters, United States Army Material Command, Washington, US-DC, 1962.
  • [23] Zhu, J.J.; Zheng, Y.; Li, W.; Yang, Y.; Wang, X.; Qiao, X.; Li, R. Axial Distribution of Fragments from the Dynamic Explosion Fragmentation of Metal Shells. Int. J. Impact Eng. 2018, 123: 140-146; https://doi.org/10.1016/j.ijimpeng.2018.09.020.
  • [24] Xin, C.L. Handbook of Common Material Parameters for Finite Element Analysis. China Machine Press, Beijing, 2019.
  • [25] Li, J.B.; Li, W.B.; Hong, X.W.; Yu, J.X.; Zhu, J.J. Blast Wave Characteristics of Multi-layer Composite Charge: Theoretical Analysis, Numerical Simulation, and Experimental Validation. Def. Technol. 2021, 19: 91-102; https://doi.org/10.1016/j.dt.2021.11.012.
  • [26] Mirzaei, M.; Tavakoli, S.; Najafi, M. On the Role of Stress Waves in Dynamic Rupture of Cylindrical Tubes. Fatigue Fract. Eng. Mater. Struct. 2017, 40(12): 2008-2018; https://doi.org/10.1111/ffe.12621.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-10e4a259-25bf-43dc-8b0f-510056d89577
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.