Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 55, nr 1 | 822--830
Tytuł artykułu

Two identities and closed-form formulas for the Bernoulli numbers in terms of central factorial numbers of the second kind

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the authors present two identities involving products of the Bernoulli numbers, provide four alternative proofs for these two identities, derive two closed-form formulas for the Bernoulli numbers in terms of central factorial numbers of the second kind, and supply simple proofs of series expansions of (hyperbolic) cosecant and cotangent functions.
Wydawca

Rocznik
Strony
822--830
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • College of Engineering, Key Laboratory of Intelligent Manufacturing Technology, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China, happy_sally@126.com
autor
  • College of Engineering, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China , wulan@imun.edu.cn
autor
  • Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454003, China, qifeng618@gmail.com
  • Independent Researcher, Dallas, TX 75252-8024, USA
Bibliografia
  • [1] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996, DOI: http://dx.doi.org/10.1002/9781118032572.
  • [2] F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math. 351 (2019), 1–5, DOI: https://doi.org/10.1016/j.cam.2018.10.049.
  • [3] F. Qi, On signs of certain Toeplitz-Hessenberg determinants whose elements involve Bernoulli numbers, Contrib. Discrete Math. 18 (2023), no. 1, in press.
  • [4] Y. Shuang, B.-N. Guo, and F. Qi, Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 3, Paper No. 135, 12 pages, DOI: https://doi.org/10.1007/s13398-021-01071-x.
  • [5] P. L. Butzer, M. Schmidt, E. L. Stark, and L. Vogt, Central factorial numbers; their main properties and some applications, Numer. Funct. Anal. Optim. 10 (1989), no. 5–6, 419–488, DOI: https://doi.org/10.1080/01630568908816313.
  • [6] M. Merca, Connections between central factorial numbers and Bernoulli polynomials, Period. Math. Hungar. 73 (2016), no. 2, 259–264, DOI: https://doi.org/10.1007/s10998-016-0140-5.
  • [7] J. Riordan, Combinatorial Identities, Reprint of the 1968 original, Robert E. Krieger Publishing Co., Huntington, N.Y., 1979.
  • [8] F. Qi and B.-N. Guo, Relations among Bell polynomials, central factorial numbers, and central Bell polynomials, Math. Sci. Appl. E-Notes 7 (2019), no. 2, 191–194, DOI: https://doi.org/10.36753/mathenot.566448.
  • [9] F. Qi, G.-S. Wu, and B.-N. Guo, An alternative proof of a closed formula for central factorial numbers of the second kind, Turk. J. Anal. Number Theory 7 (2019), no. 2, 56–58, DOI: https://doi.org/10.12691/tjant-7-2-5.
  • [10] R. E. Haddad, A generalization of multiple zeta values. Part 2: Multiple sums, Notes Number Theory Discrete Math. 28 (2022), no. 2, 200–233, DOI: https://doi.org/10.7546/nntdm.2022.28.2.200-233.
  • [11] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Eighth edition, Revised from the seventh edition, Elsevier/Academic Press, Amsterdam, 2015, DOI: https://doi.org/10.1016/B978-0-12-384933-5.00013-8.
  • [12] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972.
  • [13] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Eds), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010, http://dlmf.nist.gov/.
  • [14] F. Qi and P. Taylor, Several series expansions for real powers and several formulas for partial Bell polynomials of sinc and sinhc functions in terms of central factorial and Stirling numbers of second kind, arXiv (2022), available online at https://arxiv.org/abs/2204.05612v4.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-10d9b32d-132b-4fd6-936e-6b3287b52daa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.