Czasopismo
2016
|
Vol. 68, nr 4
|
263--284
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper is concerned with micropolar thermoelastic materials which have a double porosity structure. The system of the equations of the assumed model is based on the equations of motion, equilibrated stress equations of motion and heat conduction equation for material with double porosity. The explicit expressions for the fundamental solution of the system of equations in the case of steady vibrations are presented. The desired solutions are obtained by the use of elementary functions. Some basic properties are also established.
Czasopismo
Rocznik
Tom
Strony
263--284
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
- Department of Mathematics Kurukshetra University Kurukshetra, Haryana, India, Rajneesh_kuk@rediffmail.com
autor
- Department of Mathematics & Statistics H.P. University Shimla, HP, India, richavhr88@gmail.com
autor
- Department of Mathematics & Statistics H.P. University Shimla, HP, India, m.g.gorla@gmail.com
Bibliografia
- 1. R. De Boer, Theory of Porous Media, Springer, New York, 2000.
- 2. R. De Boer, W. Ehlers, A historical review of the foundation of porous media theories, Acta Mech., 74, 1–8, 1988.
- 3. M.A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155–164, 1941.
- 4. R.M. Bowen, Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci, 18, 1129–1148, 1980.
- 5. R. De Boer, W. Ehlers, Uplift, friction and capillarity-three fundamental effects for liquid saturated porous solids, Int. J. Solid Struc., 26, 43–57, 1990.
- 6. G.I. Barenblatt, I.P. Zheltov, I.N. Kochina, Basic concept in the theory of seepage of homogeneous liquids in fissured rocks (strata), J. Appl. Math. Mech., 24, 1286–1303, 1960.
- 7. R.K. Wilson, E.C. Aifantis, On the theory of consolidation with double porosity, Int. J. Eng. Sci., 20, 9, 1009–1035, 1982.
- 8. M.Y. Khaled, D.E. Beskos, E.C. Aifantis, On the theory of consolidation with double porosity, III, Int. J. Numer. Analy. Meth. Geomech., 8, 101–123, 1984.
- 9. R.K. Wilson, E.C. Aifantis, A double porosity model for acoustic wave propagation in fractured porous rock, Int. J. Eng. Sci., 22, 8–10, 1209–1227, 1984.
- 10. D.E. Beskos, E.C. Aifantis, On the theory of consolidation with double porosity, II, Int. J. Eng. Sci., 24 (111), 1697–1716, 1986.
- 11. N. Khalili, S. Valliappan, Unified theory of flow and deformation in double porous media, Eur. J. Mech. A, Solids, 15, 321–336, 1996.
- 12. E.C. Aifantis, Introducing a multi-porous medium, Developments in Mechanics, 8, 209–211, 1977.
- 13. E.C. Aifantis, On the response of fissured rocks, Developments in Mechanics, 10, 249–253, 1979.
- 14. E.C. Aifantis, On the problem of diffusion in solids, Acta Mechanica., 37, 265–296, 1980.
- 15. E.C. Aifantis, The mechanics of diffusion in solids, T.A.M. Report No. 440, Dept. of Theor. Appl. Mech., Univ. of Illinois, Urbana, Illinois, 1980.
- 16. K.N. Moutsopoulos, I.E. Eleftheriadis, E.C. Aifantis, Numerical simulation of transport phenomena by using the double porosity/ diffusivity continuum model, Mechanics Research Communications, 23, 6, 577–582, 1996.
- 17. N. Khalili, A.P.S. Selvadurai, A fully coupled constitutive model for thermo-hydromechanical analysis in elastic media with double porosity, Geophys. Res. Lett., 30, 2268–2271, 2003.
- 18. S.R. Pride, J.G. Berryman, Linear dynamics of double –porosity dual-permeability Materials, I, Phys. Rev. E 68, 036603, 2003.
- 19. B. Straughan, Stability and uniqueness in double porosity elasticity, Int. J. Eng. Sci., 65, 1–8, 2013.
- 20. M. Svanadze, Fundamental solution in the theory of consolidation with double porosity, J.Mech. Behav. Mater., 16, 123–130, 2005.
- 21. M. Svanadze, Dynamical problems on the theory of elasticity for solids with double porosity, Proc. Appl. Math. Mech., 10, 209–310, 2010.
- 22. M. Svanadze, Plane waves and boundary value problems in the theory of elasticity for solids with double porosity, Acta Appl. Math., 122, 461–470, 2012.
- 23. M. Svanadze, On the theory of viscoelasticity for materials with double porosity, Disc. and Cont. Dynam. Syst. Ser., 19, 7, 2335–2352, 2014.
- 24. M. Svanadze, Uniqueness theorems in the theory of thermoelasticity for solids with double porosity, Meccanica, 49, 2099–2108, 2014.
- 25. E. Scarpetta, M. Svanadze, V. Zampoli, Fundamental solutions in the theory of thermoelasticity for solids with double porosity, J. Therm. Stresses, 37, 6, 727–748, 2014.
- 26. E. Scarpetta, M. Svanadze, Uniqueness theorems in the quasi-static theory of thermoelasticity for solids with double porosity, J. Elasticity., 117, 2014.
- 27. J.W. Nunziato, S.C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rat. Mech. Anal., 72, 175–201, 1979.
- 28. S.C. Cowin, J.W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13, 125–147, 1983.
- 29. D. Iesan, R. Quintanilla, On a theory of thermoelastic materials with a double porosity structure, J. Therm. Stresses, 37, 1017–1036, 2014.
- 30. A.C. Eringen, Linear theory of micropolar elasticity, Journal of Applied Mathematics and Mechanics, 15, 909–923, 1966.
- 31. A.C. Eringen, Foundations of micropolar thermoelasticity, International Centre for Mechanical Science, Udine Course and Lectures, No. 23, Springer, Berlin, 1970.
- 32. W. Nowacki, Theory of Asymmetric Elasticity, Pergamon, Oxford, 1986.
- 33. T.R. Touchert, W.D. Jr. Claus, T. Ariman, The linear theory of micropolar thermoelasticity, International Journal of Engineering Science, 6, 37–47, 1968.
- 34. D.S. Chandrasekharaiah, Heat flux dependent micropolar thermoelasticity, International Journal of Engineering Science, 24, 1389–1395, 1986.
- 35. E. Boschi, D. Iesan, A generalized theory of micropolar thermoelasticity, Meccanica, 7, 154–157, 1973.
- 36. R.B. Hetnarski, The fundamental solution of the coupled thermoelastic problem for small times, Archiwum Mechaniki Stosowanej, 16, 23–31, 1964.
- 37. R.B. Hetnarski, Solution of the coupled problem of thermoelasticity in form of a series of functions, Archiwum Mechaniki Stosowanej, 16, 919–941, 1964.
- 38. L. Hörmander, Linear Partial Differential Operators, Springer, Berlin, 1963.
- 39. L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Springer, Berlin, 1983.
- 40. V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili, T.V. Burchuladze, Threedimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam, New York, Oxford, 1979.
- 41. R. Burridge, C.A. Vargas, The fundamental solution in dynamic poroelasticity, Geophysical Journal of the Royal Astronomical Society, 58, 61–90, 1979.
- 42. E. Scarpetta, On the fundamental solution in micropolar elasticity with voids, Acta Mechanica, 82, 151–158, 1990.
- 43. R. De Boer, M. Svanadze, Fundamental solution of the system of equations of steady oscillations in the theory of fluid-saturated porous media, Transport in Porous Media, 56, 39–50, 2004.
- 44. M. Svanadze, Fundamental solutions of the equations of the theory of thermoelasticity with microtemperatures, J. Thermal Stresses, 27, 151–170, 2004.
- 45. M. Ciarletta, A. Scalia, M. Svanadze, Fundamental solution in the theory of micropolar thermoelasticity for materials with voids, J. Thermal Stresses, 30, 213–229, 2007.
- 46. M. Svanadze, Fundamental solutions of the system of equations of steady oscillations in the theory of microstretch elastic solids, International Journal of Engineering Science, 43, 417–431, 2005.
- 47. M. Svanadze, R. Tracina, Representations of solutions in the theory of thermoelasticity with nicrotemperatures for microstretch solids, Journal of Thermal Stresses, 34, 161–178, 2011.
- 48. R. Kumar, T. Kansal, Fundamental solution in the theory of thermomicrostretch elastic diffusive solids, ISRN Applied Mathematics, 1–15, 2011.
- 49. R. Kumar, T. Kansal, Fundamental solution in the theory of micropolar thermoelastic diffusion with voids, Computational and Applied Mathematics, 31, 169–189, 2012.
- 50. K. Sharma, P. Kumar, Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids, Journal of Thermal Stresses, 36, 94–111, 2013.
- 51. M. Svanadze, Fundamental solutions in the linear theory of consolidation for elastic solids with double porosity, Journal of Mathematical Science, 195, 2, 258–268, 2013.
- 52. S. Sharma, K. Sharma, R.R. Bhargav, Plane waves and fundamental solution in electro-microstretch elastic solids, Afrika Matematika, 25, 483–497, 2014.
- 53. R. Kumar, D. Taneja, K. Kumar, Fundamental and plane wave solution in swelling porous medium, Journal of the African Mathematical Union, Afrika Matematika, 25, 2, 397–410, 2014.
- 54. R. Kumar, M. Kaur, S.C. Rajvanshi, Representation of fundamental and plane waves solutions in the theory of micropolar generalized thermoelastic solid with two temperatures, Journal of Computational and Theoretical Nanoscience, 12, 691–702, 2015.
- 55. T. Gegelia, L. Jentsch, Potential methods in continuum mechanics, Georgian Mathematical Journal, 1, 599–640, 1994.
- 56. M. Marin, S. Vlase, M. Paun, Considerations on double porosity structure for micropolar bodies, AIP Advances, 5, 037113, 2015. doi:10.1063/1.4914912.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-10a686fb-2dc2-4d88-81d3-32d77fb61f1d