Czasopismo
2012
|
T. 48, Nr 2
|
81--95
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
6th European Congress of Mathematics, 2-7 July 2012 Kraków
Języki publikacji
Abstrakty
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
81--95
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
- Department of Mathematics University of Tennessee Knoxville, TN 37996 USA, dydak@math.utk.edu
Bibliografia
- [l] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933). 177-190.
- [2] K. Borsuk, On some metrizations of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202.
- [3] K. Borsuk, W. Szmielew, Foundations of Geometry, North Holland 1960.
- [4] K. Borsuk, Theory of Retracts, Polish Scientific Publishers, 1966.
- [5] K. Borsuk, Theory of shape, Lecture Notes Series, vol. 28, Aarhus Universitet 1971.
- [6] K. Borsuk, Theory of Shape, Polish Scientific Publishers 1975.
- [7] K. Borsuk, Collected papers, Polish Scientific Publishers, Warsaw 1983.
- [8] A. Deleanu, P. J. Hilton, On the categorical shape of a functor, Fund. Math. 97 (1977), 157-176.
- [9] A. Deleanu, P.J. Hilton, Borsuk's shape and Grothendieck categories of pro-objects, Math. Proc. Camb. Phil. Soc. 79 (1976), 473-482.
- [10] A. N. Dranishnikov, On a problem of P.S. Aleksandrov, Mat. Sb. 135 (1988), 551-557.
- [11] A. N. Dranishnikov, Homological dimension theory, Uspehi Mat. Nauk 43 (1988), 11-55.
- [12] J. Dydak,]. Segal, Shape theory. An introduction, Lecture Notes in Math., vol. 688, Springer Verlag 1978.
- [13] J. Dydak, Epimorphisms and monomorphisms in homotopy, Proc. Amer. Math. Soc. 116 (1992), 1171-1173.
- [14] J.Dydak, J.J.Walsh, Infinite dimensional compacta having cohomological dimension two: An application of the Sullivan Conjecture, Topology 32 (1993), 93-104.
- [15] E. Dyer, J. Roitberg, Homotopy-epimorphisms, homotopy-monomorphisms and homotopy-equivalences, Topology and its Applications 46 (1992), 119-124.
- [16] S. Eilenberg, Karol Borsuk - personal reminiscences, Topol. Methods Nonlinear Anal. 1 (1993), 1-2.
- [17] S. Ferry, Tfie homeomorphism group of a compact Q-manifold is an ANR, Bull. Amer. Math. Soc. 82 (1976), 910-912.
- [18] S. Ferry, Topological finiteness theorems for manifolds in Gromov-Hausdorff s[ace, Duke Mathematical Journal 74 (1994), 95-106.
- [19] R. Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics, vol. 243, Springer Verlag 2007.
- [20] A. Granas, J. Jaworowski, Reminiscences of Karol Borsuk, Topol. Methods Nonlinear Anal. 1 (1993), 3-8.
- [21] K. Grove, P. Petersen, Bounding homotopy types by geometry, The Annals of Mathematics 128 (1988), 195-206.
- [22] P.Hilton, Duality in homotopy theory: a retrospective essay,]. Pure Appl. Algebra 19 (1980), 159-169.
- [23] P. Hilton, On some contributions of Karol Borsuk to homotopy theory, Topol. Methods Nonlinear Anal. 1 (1993), 9-14.
- [24] S.-T. Hu, Theory of retracts, Wayne State University Press 1965.
- [25] I. M. James (ed.), Topological Topics. Articles on Algebra and Topology Presented to Professor P J Hilton in Celebration of his Sixtieth Birthday, London Mathematical Society Lecture Note Series, vol. 86, 1983.
- [26] I. M. James (ed.), History of Topology, Elsevier Science 2006.
- [27] J. Kahn, G. Kalai, A counterexample to Borsuk's conjecture, Bulletin of the American Mathematical Society 29 (1993), 60-62.
- [28] D. Kołodziejczyk, There exists a polyhedron dominating infinitely many different homotopy types, Fund. Math. 151 (1996), 39-46.
- [29] K. M. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. 140 (1996), 723-732.
- [30] K. M. Kuperberg, W. Kuperberg, P. Mine, C. S. Reed, Examples Related to Ulam's Fixed Point Problem, Topol. Methods Nonlinear Anal. 1 (1993), 173-181.
- [31] S. Mardeśić, J. Segal, Shape theory, North-Holland Publ.Co., Amsterdam 1982.
- [32] J. Matoušek, Using the Borsuk–Ulam theorem, Springer Verlag, Berlin 2003.
- [33] M. Moszyńska, Karol Borsuk: 08.05.1905 – 24.01.1982, Glas. Mat. Ser. III 17 ( (1982), 413-423.
- [34] J. M.R. Sanjurjo, Shape and Conley Index of Attractors and Isolated Invariant Sets, vol. 75, Birkhauser Verlag, Basel/Switzerland 2007, Progress in Nonlinear Differential Equations and Their Applications.
- [35] J. M.R. Sanjurjo, Stability, attraction and shape: A topological study of flows, vol. 12, Juliusz Schauder Center winter school on topological methods in nonlinear analysis 2011, Lecture Notes in Nonlinear Analysis.
- [36] J. Segal, Borsuk's shape theory, Topol. Methods Nonlinear Anal. 1 (1993), no. 1, 43-48.
- [37] E. V. Shchepin, Finite-dimensional bicompact absolute neighborhood retracts are metrizable, Dokl.Akad.Nauk SSSR 233 (1977), 304-307.
- [38] K. Sieklucki, The scientific activity of Professor Karol Borsuk, Wiad. Mat. 20 (1978), 172-174. in Polish.
- [39] R. S. Simon, S. Spież, H. Toruńczyk, The existence of equilibria in certain games, separation for families of convex functions and a theorem of Borsuk-Ulam type, Israel Journal of Mathematics 92 (1995), 1-21.
- [40] H. Toruńczyk, Homeomorphism groups of compact Hilbert cube manifolds which are manifolds, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 25 (1977), 401-408.
- [41] W. Thurston, On proof and progress in mathematics, Bull. Am. Math. Soc. 30 (1994), 161-177.
- [42] S. M. Ulam, Adventures Of a mathematician, Charles Scribner's Sons, New York 1976.
- [43] O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov, Elementary Topology Problem Textbook, AMS 2009.
- [44] J. West, Borsuk's influence on infinite-dimensional topology, Topol. Methods Nonlinear Anal. 1 (1993), no. 1, 35-41.
- [45] E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341-358.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-10a639d1-1deb-418f-8809-e5fe855033da