Warianty tytułu
Języki publikacji
Abstrakty
Ultrasonic burnishing (UB), in which a ball tip is usually utilized, has been proved to be an effective method for metal surface strengthening. In this study, a roller tip was employed in the ultrasonic burnishing of Inconel 718 alloy (ultrasonic roller burnishing, URB). Meanwhile, a new surface modification technique, i.e., a combination of URB and heat treatment (URB/HT), was advanced to achieve better surface finishing. The surface integrities together with the mechanical behaviors of various samples treated by URB or URB/HT were experimentally examined and compared. Meanwhile, the transient stress distribution of the being treated materials with two treatments was comparatively analyzed by the FEA method. As result, compared with URB, the URB/HT-treated sample had better surface morphology, lower surface roughness, higher micro-hardness, and more well-distributed compressive residual stress. Furthermore, URB/HT-treated samples presented higher yield strength and lower wear rate in comparison with the URB-treated ones. The reduction of deformation resistance and easy flow of the near-surface material during URB/HT treatment mostly contributed to the excellent surface finishing.
Czasopismo
Rocznik
Tom
Strony
618--634
Opis fizyczny
Bibliogr. 37 poz., fot., rys., wykr.
Twórcy
autor
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, People’s Republic of China
autor
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
autor
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China, baolinw@qlu.edu.cn
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, People’s Republic of China
autor
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, People’s Republic of China
autor
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
autor
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People’s Republic of China
Bibliografia
- [1] Hsu CY, Lin YY, Lee WS, Lo SP. Machining characteristics of Inconel 718 using ultrasonic and high temperature-aided cutting. J Mater Process Tech. 2008;198(1–3):359–65.
- [2] Kim JH, Park JM, Park JK, Jeon KL. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718. Nucl Eng Des. 2014;269:66–71.
- [3] Maj P, Błyskun P, Kut S, Romelczyk-Baishya B, Mrugała T, Adamczyk-Cieslak B, et al. Flow forming and heat-treatment of Inconel 718 cylinders. J Mater Process Technol. 2018;253:64–71. https://doi.org/10.1016/j.jmatprotec.2017.11.010.
- [4] Wang T, Wang D-P, Shen Y, Gong B-M, Deng C-Y. Effect of ultrasonic surface rolling processing parameters on 40Cr surfach roughness. J Tianjin Univ Sci Technol. 2009;42(2):168–72.
- [5] Shen X, Gong X, Zhang J, Su G. An investigation of stress condition in vibration-assisted burnishing. Int J Adv Manuf Technol. 2019;105(1):1189–207. https://doi.org/10.1007/s00170-019-04128-9.
- [6] Zhou Z, Gill AS, Qian D, Mannava SR, Langer K, Wen Y, et al. A finie element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy. Int J Impact Eng. 2011;38(7):590–6. https://doi.org/10.1016/j.ijimpeng.2011.02.006.
- [7] Tolga Bozdana A, Gindy NNZ, Li H. Deep cold rolling with ultrasonic vibrations-a new mechanical surface enhancement technique. Int J Mach Tools Manuf. 2005;45(6):713–8. https://doi.org/10.1016/j.ijmachtools.2004.09.017.
- [8] Munoz-Cubillos J, Coronado JJ, Rodriguez SA. Deep rolling effect on fatigue behavior of austenitic stainless steels. Int J Fatigue. 2017;95:120–31.
- [9] Nguyen T-T, Cao L-H, Nguyen T-A, Dang X-P. Multi-response optimization of the roller burnishing process in terms of energy consumption and product quality. J Clean Product. 2020. https://doi.org/10.1016/j.jclepro.2019.119328.
- [10] Gyawali G, Joshi B, Tripathi K, Lee SW. Effect of ultrasonic nanocrystal surface modification on properties of electrodeposited Ni and Ni-SiC composite coatings. J Mater Eng Perform. 2017;26(9):4462–9. https://doi.org/10.1007/s11665-017-2891-4.
- [11] Yang Z, Liu Q, Wang J, Ma Z, Wang Y, Wang D. Effect of ultrasonic impact treatment on the microstructure and mechanical properties of diffusion-bonded TC11 alloy joints. Arch Civil Mech Eng. 2019;19(4):1431–41. https://doi.org/10.1016/j.acme.2019.09.006.
- [12] Shi Y-L, Shen X-H, Xu G-F, Xu C-H, Wang B-L, Su G-S. Surface integrity enhancement of austenitic stainless steel treated by ultrasonic burnishing with two burnishing tips. Arch Civil Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00074-6.
- [13] Amanov A, Cho IS, Pyoun YS, Lee CS, Park IG. Micro-dimpled surface by ultrasonic nanocrystal surface modification and its tribological effects. Wear. 2012;286–287:136–44. https://doi.org/10.1016/j.wear.2011.06.001.
- [14] Amanov A, Umarov R. The effects of ultrasonic nanocrystal surface modification temperature on the mechanical properties and fretting wear resistance of Inconel 690 alloy. Appl Surf Sci. 2018;441:515–29. https://doi.org/10.1016/j.apsusc.2018.01.293.
- [15] Hua Y, Liu Z, Wang B, Hou X. Surface modification through combination of finish turning with low plasticity burnishing and its effect on fatigue performance for Inconel 718. Surf Coat Technol. 2019;375:508–17. https://doi.org/10.1016/j.surfcoat.2019.07.057.
- [16] Lu H, Jia X, Zhang K, Yao C. Fine-grained pretreatment process and superplasticity for INCONEL718 superalloy. Mater Sci Eng, A. 2002;326(2):382–5. https://doi.org/10.1016/S0921-5093(01)01521-0.
- [17] Siu KW, Ngan AHW, Jones IP. New insight on acoustoplasticity-Ultrasonic irradiation enhances subgrain formation during deformation. Int J Plast. 2011;27(5):788–800. https://doi.org/10.1016/j.ijplas.2010.09.007.
- [18] Sauvage X, Mukhtarov S. Microstructure evolution of a multiphase superalloy processed by severe plastic deformation. IOP Conf Series: Mater Sci Eng. 2014;63: 012173. https://doi.org/10.1088/1757-899x/63/1/012173.
- [19] Cao XJ, Pyoun YS, Murakami R. Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification. Appl Surf Sci. 2010;256(21):6297–303. https://doi.org/10.1016/j.apsusc.2010.04.007.
- [20] Sun Z, Ye Y, Xu J, Hu T, Ren S, Li B. effect of electropulsing on surface mechanical behavior and microstructural evolution of inconel 718 during ultrasonic surface rolling process. J Mater Eng Perform. 2019;28(11):6789–99. https://doi.org/10.1007/s11665-019-04443-y.
- [21] Amanov A, Pyun Y-S. Local heat treatment with and without ultrasonic nanocrystal surface modification of Ti-6Al-4V alloy: mechanical and tribological properties. Surf Coat Technol. 2017;326:343–54. https://doi.org/10.1016/j.surfcoat.2017.07.064.
- [22] Aghaie-Khafri M, Honarvar F, Zanganeh S. Characterization of grain size and yield strength in AISI 301 stainless steel using ultrasonic attenuation measurements. J Nondestr Eval. 2012;31(3):191–6. https://doi.org/10.1007/s10921-012-0134-z.
- [23] Amanov A, Urmanov B, Amanov T, Pyun YS. Strengthening of Ti-6Al-4V alloy by high temperature ultrasonic nanocrystal surface modification technique. Mater Lett. 2017;196:198–201. https://doi.org/10.1016/j.matlet.2017.03.059.
- [24] Teimouri R. Optimization of residual stress field in ultrasonic assisted burnishing process. Int J Lightweight Mater Manuf. 2019;2(4):346–54. https://doi.org/10.1016/j.ijlmm.2019.04.009.
- [25] Zhou Z, Gill AS, Telang A, Mannava SR, Langer K, Vasudevan VK, et al. Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 SPF superalloy. Exp Mech. 2014;54(9):1597–611. https://doi.org/10.1007/s11340-014-9940-9.
- [26] Facchinello Y, Brailovski V, Prokoshkin SD, Georges T, Dubinskiy SM. Manufacturing of nanostructured Ti–Ni shape memory alloys by means of cold/warm rolling and annealing thermal treatment. J Mater Process Technol. 2012;212(11):2294–304. https://doi.org/10.1016/j.jmatprotec.2012.07.001.
- [27] Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001;49(19):3899–918. https://doi.org/10.1016/S1359-6454(01)00295-6.
- [28] Giannakopoulos AE, Suresh S. Theory of indentation of piezoelectric materials. Acta Mater. 1999;47(7):2153–64. https://doi.org/10.1016/S1359-6454(99)00076-2.
- [29] Walter C, Antretter T, Daniel R, Mitterer C. Finite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters. Surf Coat Technol. 2007;202(4):1103–7. https://doi.org/10.1016/j.surfcoat.2007.07.038.
- [30] Chen L, Ahadi A, Zhou J, Ståhl J-E. Modeling effect of surface roughness on nanoindentation tests. Procedia CIRP. 2013;8:334–9. https://doi.org/10.1016/j.procir.2013.06.112.
- [31] Jiang W-G, Su J-J, Feng X-Q. Effect of surface roughness on nanoindentation test of thin films. Eng Fract Mech. 2008;75(17):4965–72. https://doi.org/10.1016/j.engfracmech.2008.06.016.
- [32] Qing X, Xingming G. The scale effect on the yield strength of nanocrystalline materials. Int J Solids Struct. 2006;43(25):7793–9. https://doi.org/10.1016/j.ijsolstr.2006.04.015.
- [33] Zhou X, Li X, Lu K. Size dependence of grain boundary migration in metals under mechanical loading. Phys Rev Lett. 2019;122(12):126101. https://doi.org/10.1103/PhysRevLett.122.126101.
- [34] Amanov A. Improvement in mechanical properties and fretting wear of Inconel 718 superalloy by ultrasonic nanocrystal surface modification. Wear. 2020;446–447: 203208. https://doi.org/10.1016/j.wear. 2020.203208.
- [35] Konyashin I, Ries B, Hlawatschek D, Zhuk Y, Mazilkin A, Straumal B, et al. Wear-resistance and hardness: are they directly related for nanostructured hard materials? Int J Refract Metal Hard Mater. 2015;49:203–11. https://doi.org/10.1016/j.ijrmhm.2014.06.017.
- [36] Fang L, Kong XL, Su JY, Zhou QD. Movement patterns of abrasive particles in three-body abrasion. Wear. 1993;162–164:782–9. https://doi.org/10.1016/0043-1648(93)90079-2.
- [37] Fang L, Zhou QD, Li YJ. An explanation of the relation between wear and material hardness in three-body abrasion. Wear. 1991;151(2):313–21. https://doi.org/10.1016/0043-1648(91)90258-V.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1060cdf2-cb73-49b7-bda4-b12d2021cd71