Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, iss. 7 | 129--138
Tytuł artykułu

Effect of Using Basal Fertilizer 15-15-15 on Leaf Chlorophyll a Fluorescence, Plant Growth and Fruit Yield of Table Grapes Grown under the Mediterranean Climate Conditions of the Northeast of Morocco

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plant nutrition presents one of the main concerns of table growers in Morocco. Since the increase of the prices of fertilizers, the optimization of the amount of nutrients elements is important. Crop deficiency in terms of Nitrogen (N), Phosphorus (P) and Potassium (K) was demonstrated to decrease growth and productivity of plants. The objective of this research was to investigate the effect of adding Basal N-P-K Fertilizer (15-15-15) to soil on some physiological parameters of table grapes, such as chlorophyll fluorescence, plant growth and fruit yield. Trials were conducted northeast of Morocco and under Mediterranean climate conditions on a production of 8-year-old table grapes (v. Regal). The planting density was 2000 plants/ha. In a field of 10 ha of commercial production, a plot of twenty-four trees were selected for each treatment (control (C) and treated (Tr) plants with basal fertilizer). A basal fertilizer (15-15-15) was applied in the beginning of the vegetative growth stage, at 5 cm above to the root system. An amount of 150 g/tree was applied. A conventional fertilization program was used by the grower in both control and treated plots, except for the prototype treatment plots where the basal fertilizer was only applied. No significant effect of the treatment on plant growth and fruit yield was noted. Moreover, no significant difference was recorded on leaves relative water content (RWC), chlorophyll content (LCC), and chlorophyll fluorescence parameters such as: F0, Fm, Fv/Fm, Vi Vj, ABS/RC, DI0/RC, TR0/RC, ET0/RC and RE0/RC.
Wydawca

Rocznik
Strony
129--138
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Multidisciplinary Faculty of Nador, University Mohammed First P.O. Box 300, Selouane, Morocco
  • National School of Agriculture Meknès, Km10, Rte Haj Kaddour, P.O. Box S/40, Meknès, 50001, Morocco
  • Multidisciplinary Faculty of Nador, University Mohammed First P.O. Box 300, Selouane, Morocco, k.aberkani@ump.ac.ma
Bibliografia
  • 1. Agrimaroc. 2021. Fiche technique de la culture de la vigne au Maroc. Available on: https://www.agrimaroc.ma/fiche-technique-de-la-culture-de-la-vigne-au-maroc/
  • 2. Ali I., Wang X., Abbas W.M. Hassan M.U. Shafique M., Tareen, M.J., Fiaz S., Ahmed, W., Qayyum, A. 2021. Quality Responses of Table Grapes ‘Flame Seedless’ as Effected by Foliarly Applied Micronutrients. Horticulturae, 7, 462.
  • 3. Arora N.K., Gill M. 2012. Influence of nitrogen, phosphorus and potassium fertilizers on yield and quality of grapes cv. perlette. HortFlora Research Spectrum, 1, 17–23.
  • 4. Bindraban P., Dimkpa C., Pandey R. 2020. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 56(3), 299–317.
  • 5. Bita C.E., Gerats T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers Plant Science, 31(4), 273.
  • 6. Carranca C., Brunetto G., Tagliavini M. 2018. Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants. 7, 4.
  • 7. Chang S., Kliewer W. 1991. Effect of nitrogen forms and rates, shade, and presence and absence of Ca++ on the growth, tissue nitrogen compositions, and fruit quality of grapevines. In International Symposium on N in grapes and Wine. Eds Rantz J.M., 228–238.
  • 8. Ciotta M.N., Ceretta C.A., Veridiana Krug A. Brunetto, G. Nava G. 2021. Grape (Vitis vinifera L.) production and soil potassium forms in vineyard subjected to potassium fertilization. Revista Brasileira de Fruticultura, 43(1), e-682.
  • 9. Dong W., Qin J., Li J., Zhao Y., Nie L., Zhang Z. 2011. Interactions between soil water content and fertilizer on growth characteristics and biomass yield of Chinese white poplar (Populus tomentosa Carr.) seedlings, Soil Science and Plant Nutrition, 57(2), 303–312.
  • 10. Ferrara G., Malerba A.D., Matarrese A.M.S., Mondelli D, Mazzeo A. 2018. Nitrogen Distribution in Annual Growth of 'Italia' Table Grape Vines. Front Plant Sci., 29(9), 1374.
  • 11. Fiorentini M., Zenobi S., Giorgini E., Basili D., Conti C., Pro C. 2019. Nitrogen and chlorophyll status determination in durum wheat as influenced by fertilization and soil management: Preliminary results. PLoS ONE, 14(11), e0225126.
  • 12. Garzon E., Gonzalez-Andres F., García-Martínez V.M., Paz, J. M. 2011. Mineralization and nutrient release of an organic fertilizer made by flour, meat, and crop residues in two vineyard soils with different pH levels. Commun. Soil Science and Plant Analysis, 42, 1485–1496.
  • 13. Gill P., Ganaie M., Dhillon W., Singh N.P. 2012. Effect of foliar sprays of potassium on fruit size and quality of ‘Patharnakh’pear. Indian Journal of Horticulture, 69, 512–516.
  • 14. Govindje E. 1995. Sixty-three years snce kautsky: chlorophyll a fluorescence. Australian journal of Plant Physiology, 22, 131–160.
  • 15. Harhash M.M., Abdel-Nasser G. 2010. Improving of fruit set, yield and fruit quality of“ Khalas” tissue culture derived date palm through bunches spraying with potassium and/or boron. Australian Journal of Basic and Applied Sciences, 4(9), 4164–4172.
  • 16. Havlin J.L., Beaton J.D. Tisdale S.L., Nelson W.L. 2005. Soil Fertility and Fertilizers: 7th edition. An Introduction to Nutrient Management. Upper Saddle River, New Jersey, USA.
  • 17. Hou W., Tränkner M., Lu, J. 2019. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. BMC Plant Biology, 19, 302.
  • 18. Iqbal A., Qiang D., Xiangru W. 2023. Phosphorus and carbohydrate metabolism contributes to low phosphorus tolerance in cotton. BMC Plant Biology, 23, 97.
  • 19. Jerry L. Hatfield J., Prueger H. 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10.
  • 20. Kacar B. 1997. Fertilizer application. Ankara Univ. Agricultural Fac., Ankara. 1490, 441.
  • 21. Karimi R. 2017. Potassium-induced freezing tolerance is associated with endogenous abscisic acid, polyamines and soluble sugars changes in grapevine. Scientia Horticulturae. Wageningen, 215, 184–194.
  • 22. Kim H., Li X. 2016. Effects of Phosphorus on Shoot and Root Growth, Partitioning, and Phosphorus Utilization Efficiency in Lantana, HortScience, 51(8), 1001–1009.
  • 23. Kitajima M., Butler W.L. 1975. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta, 376, 105–115.
  • 24. Kumar D., Singh H., Raj S., Soni V. 2020. Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochemistry and Biophysics Reports, 24, 100813.
  • 25. Liu J., Shu A., Song W., Shi W., Li, M., Zhang W., Li Z., Liu G., Yuan F., Zhang S., Liu Z. Gao, Z. 2021. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria, Geoderma, 404.
  • 26. Maxwell K., Johnson G.N. 2000. Chlorophyll fluorescence: a practical guide. Journal of Experimental Botany, 5(345), 659–668.
  • 27. Mpelasoka B.S., Shachtman D.P., Treeby M.T., Thomas, M.R. 2003. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Australian Journal of Grape and Wine Research, Oxford, 9, 154–168.
  • 28. Nievola C.C., Carvalho C.P., Carvalho V., Rodrigues, E. 2017. Rapid responses of plants to temperature changes. Temperature (Austin), 4(4), 371–405.
  • 29. Peng, S., Sanico A.L., Garcia F.V., Laza R.C., Visperas R.M., Descalsota J.P., Cassman, K.G. 1999. Effect of leaf phosphorus and potassium concentration on chlorophyll meter reading in rice. Agronomy and Horticulture. Faculty Publications, 1215.
  • 30. Ramos M.C. Romero M.P. 2016. Potassium uptake and redistribuition in Cabernet Sauvignon and Syrah grape tissues and its relationships with grape quality parameters. Journal of the Science of Food and Agriculture, 97(10), 3268–3277.
  • 31. Rashid M.M., Jahan M Shariful Islam K. 2016. Impact of Nitrogen, Phosphorus and Potassium on Brown Planthopper and Tolerance of Its Host Rice Plants. Rice Science, 23(3), 119–131.
  • 32. Samadi A. 2006. Potassium exchange isotherms as a plant availability index in selected calcareous soils of Western Azarbaijan Province, Iran. Turkey Journal of Agriculture, 30, 213–222.
  • 33. Samri S.E., Aberkani K., Said M., Haboubi K., Ghazal H. 2021. Effects of inoculation with mycorrhizae and the benefits of bacteria on physicochemical and microbiological properties of soil, growth, productivity, and quality of table grapes grown under Mediterranean climate conditions. Journal of Plant Protection Research, 61(4), 337–346.
  • 34. Schreiber U., Neubauer C. 1987. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. partial control by the photosystem II donor side and possible ways of interpretation. Zeitschrift Fur Naturforsch. - Section C, Bioscience, 42(11), 1255–1264.
  • 35. Schreiber, U. 2004. Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method: An Overview. In: Papageorgiou, G.C., Govindjee (eds) Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration, Springer, Dordrecht, 19, 279–319.
  • 36. Sharma R.P., Datt N., Sharma P.K. 2003. Combined application of nitrogen, phosphorus, potassium and farmyard manure in onion (Allium cepa) under high hills, dry temperate conditions of north-western Himalayas Indian Journal of Agricultural Sciences, 73, 225–227.
  • 37. Singh A., Singh S.P., Singh, B.O. 2002. Effect of VAM and inorganic fertilizers on growth and yield of onion (Allium cepa L.). Journal of Vegetation Science, 29, 40–42.
  • 38. Song Y., Chen Q., Ci D. 2014. Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biology, 14, 111.
  • 39. Strand M., Lundmark T. 1995. Recovery of photosynthesis in 1-year-old needles of unfertilized and fertilized Norway spruce (Picea abies (L.) Karst.) during spring. Tree physiology, 15(3), 151–8.
  • 40. Strasser R.J., Tsimilli-Michael M., Srivastava A. 2004. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G.C., Govindjee, editors. Chlorophyll a Fluoresc. A Signat. Photosynth. Springer Netherlands; Dordrecht, 19, 321–362.
  • 41. Ullah Khan S., Alizai A.A., Ahmed A., Sayed S., Junaid M., Kanwal M., Ahmed A., Alqubaie A.I, Alamer K.H., Ali. EF. 2022. Investigating the role of potassium and urea to control fruit drop and to improve fruit quality of “Dhakki” date palm. Saudi Journal of Biological Sciences, 29(5): 3806–3814.
  • 42. Waraich E.A., Ahmad R., Halim A., Aziz T. 2012. Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of soil science and plant nutrition. 12(2), 221–244.
  • 43. Xiaohuan M., Yanling C. 2021. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry, 158, 76–82.
  • 44. Zhou Z., Zhang S., Jiang N., Xiu W., Zhao J. Yang D. 2022. Effects of organic fertilizer incorporation practices on crops yield, soil quality, and soil fauna feeding activity in the wheat-maize rotation system. Frontiers in Environmental Science, 10, 1058071.
  • 45. Živčák M., Brestič M., Olšovská K., Slamka P. 2008. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant, Soil and Environment, 54(4), 133–139.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-10545d39-b7a2-4ab8-a54d-467d202ef2a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.