Warianty tytułu
Zintegrowana metoda selekcji dostawcy 3PL wykorzystująca mechanizm SVM i FAHP
Języki publikacji
Abstrakty
The selection of third party logistics (3PL) providers is an important issue for enterprises to outsource their logistics business. In this paper, a new integrated model is put forward for selecting 3PL providers based on support vector machine (SVM) and fuzzy analytic hierarchy process (FAHP). In the first stage, the support vector machine (SVM) is used to classify the primary 3PL provider samples into four types which are excellent, good, medium and bad respectively. Then we can obtain the excellent samples which are the candidates for the second stage selection. In the second stage, the FAHP is used to evaluate the selected excellent samples in the first stage, so we can obtain the sorting results for the excellent samples and the optimal samples. The results of the case study show that the model is reasonable and effective and it can provide an important reference for enterprises to select 3PL providers.
W artykule przedstawiono nowy zintegrowany model umożliwiający przyśpieszenie selekcji dostawcy 3PL (third party logistics). Model wykorzystuje metodę SVM (suport vector machine) i FAHP (fuzzy analytic hierarchy proces).
Czasopismo
Rocznik
Tom
Strony
5-8
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University
- Business School, Hohai University
autor
- All-Trans Logistics School, Fuzhou University, Xcyz_zjm@163.com
Bibliografia
- [1] Menon M. K., Miehael A. M., Kenneth B.A., Selection criteria for providers of third–Party logistics services: an exploratory study, Journal of Business Logisties, 19(1998),No.1,121-137
- [2] Penny M. S., Measuring the performance of suppliers: An analysis of evaluation processes, Journal of Supply Chain Management, 38(2002), No.1, 29-43
- [3] Su J. N., Chen J. H., Multilevel gray evaluation method applies in supply chain logistics partner selection, Operations Research and Management Science, 15(2006), No. 3, 66-70
- [4] Zhang Z. H., A probe on logistics strategic partner selecting model with preference DEA based on AHP, Journal of Chinese Market, (2007),No.8, 66-67
- [5] Liu H. T., Wang W. K., An integrated fuzzy approach for provider evaluation and selection in third-party logistics, Expert Systems with Applications, 36(2009),No 3, 4387-4398
- [6] Liao C. N., Kao H. P., An integrated fuzzy TOPSIS and MCGP approach to supplier selection in supply chain management, Expert Systems with Applications, 38(2011),No.9, 10803-10811
- [7] Li F. C., Li L., Jin C. X., Wang R. J., Wang H., Yang L. L., A 3PL supplier selection model based on fuzzy sets, Computers & Operations Research, 39(2012),No.8, 1879-1884
- [8] Vapnik, V. The Nature of Statistical Learning Theory, Springer- Verlag, New York(1995).
- [9] Chi-wei, H., Chih-jen, L., A Comparison of Methods for Multiclass Support Vector Machine, IEEE Transacatutions on Neural Networks,13(2002),No. 2, 415-425
- [10] Gold, C., Sollich, P., Model selection for support vector machine classification, Neurocomputing, 55 (2003), No.1, 221-249
- [11] Mao X. B., Li C. X., Application of PCA-SVM in fault diagnosis for analog circuit, Computer Measurement & Control, 17(2009),No.7, 1250-1253
- [12] Tian J. F., Wu L., A Model of Flood Disaster Evaluation Based on SVM, Journal of Chinese Hydrology, 29(2009), No. 1, 66-68
- [13] Zhang X. G., Statistical learning theory and support vector machines, Acta Automatic Sinica, 26(2001), No. 1, 32-42
- [14] Luo Z. M., Zhou J. Z., Zhang Y. C., Wu S.Y., Partners optimum decision-making of virtual research center based on support vector machine and fuzzy analytic hierarchy process, Computer Integrated Manufacturing System, 15(2009), No.11, 2266-2272
- [15] Buckley J. J., Fuzzy analytic hierarchy, Fuzzy Sets and Systems, 17(1985), No.3, 233-247
- [16] Lu G. Y., Zhu Z. Q., Li H., Xiong Y., Rock mass classification method in highway tunnel based on fuzzy analytic hierarchy process, Journal of Chinese Central-South University, 39(2008),No.2,368-374
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-1016d137-532b-4295-b16b-e3a7276246c8