Czasopismo
2016
|
R. 92, nr 2
|
185--192
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Przewidywanie procesu rozładowania baterii w pojazdach typu dron
Języki publikacji
Abstrakty
This paper proposes a comparative study methodology for the prediction of Li-Po (Lithium Ion Polymer) batteries discharge in UAVs (Unmanned Aerial Vehicles) using four approaches based on Artificial Neural Networks (ANNs) using Multilayer Perceptron (MLP) and Extreme Learning Machine (ELM) techniques, Polynomial Regression, and Kalman Filter (KF). The information estimates are important to assist in making decisions on which missions can be addressed to UAVs when supplied by such batteries. The data series for the experiments are obtained from tests carried out on a test bench.
W artykule przedstawiono stadium porównawcze metodologii przewidywania procesu rozładowania baterii litowych wykorzystujących sieci neuronowe. Baterie te były stosowane w pojazdach typu dron.
Czasopismo
Rocznik
Tom
Strony
185--192
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wykr.
Twórcy
autor
- Federal University of Ceará (UFC), Sobral-CE, Brazil, daryewson@gmail.com
autor
- Federal University of Ceará (UFC), Sobral-CE, Brazil, vandilberto@ufc.br
autor
- Federal University of Ceará (UFC), Sobral-CE, Brazil
autor
- Department of Electrical Engineering, Federal University of Ceará (UFC), Sobral-CE, Brazil
autor
- Department of Computer Science and Institute, Federal University of Ceará (UFC), Fortaleza-CE, Brazil
autor
- Federal University of Ceará (UFC), Sobral-CE, Brazil
autor
- Department of Electrical Engineering, Federal University of Ceará (UFC), Sobral- CE, Brazil
Bibliografia
- [1] Bole, B.; Daigle, M and Gorospe, G. (2014). Online prediction of battery discharge and estimation ofparasitic loads for an electric aircraft. Proceedings of the European Conference of thePrognostics and Health Management Society, Nantes.
- [2] Huggins, R. (2008). Advanced Batteries: Materials ScienceAspects, 1st ed., Springer.
- [3] Gyro-200ED-X8. available in: www.gyrofly.com. br
- [4] Rojas, R., (1996). Neural Networks: A Systematic Introduction. Springer, Berlin.
- [5] Ali Khadem, Gholam-Ali Hossein-Zadeh. (2014). Estimation of direct nonlinear effective connectivity using information theory and multilayer perceptron. Journal of Neuroscience Methods, Volume 229, Pages 53-67. doi:10.1016/j.jneumeth.2014.04.008
- [6] Sang-Hoon Oh. (2011). Error back-propagation algorithm for classification of imbalanced data. Neurocomputing. doi:10.1016/j.neucom.2010.11.024
- [7] G. B. Huang, Q. Y. Zhu, and C. K. Siew. (2006).Extreme learning machine: theory and applications. Neurocomputing. doi:10.1016/j.neucom.2005.12.126
- [8] Magee, Lonnie (1998). Nonlocal Behavior in Polynomial Regressions. The American Statistician (American Statistical Association) 52 (1): 20–22. doi:10.2307/2685560
- [9] Chui, Charles K.; Chen, Guanrong. (2009).Kalman Filtering with Real-Time Applications. 4th ed. New York: Springer. 229 p. vol. 17
- [10] Orchard M. E. and Vachtsevanos G. J. (2009). A particlefiltering approach for on-line fault diagnosis and failure prognosis. Transactions of the Institute of Measurement and Control, No. 31; pp. 221-246.
- [11] Chi Keong Reuben Lim, David Mba. (2015). Switching Kalman filter for failure prognostic. Mechanical Systems and Signal Processing, Volumes 52–53. doi:10.1016/j.ymssp.2014.08.006
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-100d1f57-356a-44a3-9d3f-4177ef3975fe