Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 18, No. 1 | 18--28
Tytuł artykułu

Nonlinear dynamic analysis of axially moving porous FG plate subjected to local force with kinetic dynamic relaxation method

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In some engineering applications like moving ships the axially moving FG structures have to be investigated. In this paper, the nonlinear response and stability of an axially moving porous FGM plate under a local concentrated load are studied. The plate is made of materials whose properties are assumed to be graded in the thickness direction. To take the effect of porosity into account, the modified rule of mixture is chosen to calculate the effective material properties. The kinetic dynamic relaxation method along with the implicit Newmark integration are used to solve the nonlinear dynamic equations. Finally, the effect of material gradient index, porosity volume fraction and boundary conditions on dynamic deflection and instability of plate are discussed.
Wydawca

Rocznik
Strony
18--28
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Department of Mechanical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Bibliografia
  • Akay, H., 1979, Dynamic large deflection analysis of plates using mixed finite elements, Comput. Struct., 11, 1-11.
  • Alamatian, J., 2012, A new formulation for fictitious mass mof the dynamic relxation method with kinetic damping, Comput. Struct, 90-91, 42-54.
  • Alic, V., Persson, K., 2016, Form finding with dynamic relaxation and isogeometric membrane, Comput.Methods Appl. Mech. Engrg., 300, 734-747.
  • Atmane, H., Tounsi, A., Bernard, F., 2015, Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations, Int. J. Mech. Mater. Des., 1-14.
  • Banichuk, N., Jeronen, J., Neittaanmaki, P., Tuovinen, T., 2010, On the instability of an axially moving elastic plate, Int. J. Solids Struct., 47, 91-99.
  • Biot, M., 1964, Theory of buckling of a porous slab and its thermoelastic analogy, J. Appl. Mech., 31, 194-198.
  • Chen, A., Jian, S., 2011, Dynamic response of clamped axially moving beam: integral transform, Appl. Math.Comput., 218, 249-256.
  • Chen, D., Yang, J., Kitipornchai, S., 2015, Elastic buckling and static bending of shear deformable functionally graded porous beam, Compos. Struct., 133, 54-61.
  • Chen, L.-Q., Yang, X.-D., 2007, Nonlinear free transverse vibration of an axially moving beam: comparison of two models, J. Sound. Vib., 299, 348-354.
  • Clough, R., J.Penzien, 1993, Dynamic of Structures, s.l.: McGraw-Hill.
  • Ebrahimi, F., Ghasemi, A., Salari, E., 2016, Investigating thermal effects on vibration behavior of temperaturedependent compositionally graded euler beams with porosities, Meccanica, 51, 223-249.
  • Ebrahimi, F., Zia, M., 2015, Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities, Acta Astronaut., 116, 117-125.
  • Eftekhari, S., 2014, A Differential quadrature procedure with regularization of dirac – delta – function for numerical solution of moving load problem, Lat. Am. J.Solids Struct., 12, 1241-1265.
  • Fallah, A., Aghdam, M., 2012, Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation,Compos B., 43, 1523-1530.
  • Golmakani, M., Kadkhodayan, M., 2013, Large deflection thermoelastic analysis of functionally graded stiffened ,annular sector plates, Int. J. Mech. Sci., 69, 94-106.
  • Hatami, S., Ronagh, H., Azhari, M., 2008, Exact free vibration analysis of axially moving viscoelastic plates, Comput. Struct., 86, 1738–1746.
  • Ishak, A., Azizah Yacob, N., Bachok, N., 2011, Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition, Meccanica, 46, 795–801.
  • Jabbari, M., Joubaneh, E., Khorshidvand, A., Eslami, M., 2013, Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression, Int. J. Mech. Sci., 70, 50-56.
  • Joubaneh, E., Mojahedin, A., Khorshidvand, A., Jabbari, M., 2014, Thermal buckling analysis of porous circular plate with piezoelectric sensor–actuator layers under uniform thermal load, J. Sandwich. Struct. Mater., 17, 3-25
  • Kieback, B., Neubrand, A., Riedel, A., 2003, Processing techniques for functionally graded materials, Mater.Sci. Eng., A, 362, 81-106.
  • Lee, K. S., Han, S. E., Park, T., 2011, A simple explicit arclength method using the dynamic relaxation method, Comput. Struct., 89, 216-233.
  • Marynowski, K., and Kapitaniak, T., 2002, Kelvin-Voigt versus Burgers internal damping in modeling of axially moving viscoelastic web, Int. J. Non-Linear Mech., 37, 1147-1161.
  • Rezaiee-Pajand, M., Alamatian, J., 2008, Nonlinear dynamic analysis by dynamic relaxation method, J. Struct. Eng. Mech., 28, 549-570.
  • Shin, C., Chung, J., Kim, W., 2005, Dynamic characteristics of the out-of-plane vibration for an axially moving membrane, J. Sound Vib., 286, 1019-1031.
  • Swope, R., Ames, W., 1963, Vibration of moving threadline, J. Franklin Inst., 275, 36-55.
  • Taheri, M., Ting, E., 1989, Dynamic response of plate to moving loads: structural impedance method, Comp. Struct., 33, 1379-1390.
  • Topping, B., Ivanyi, P., 2007, Computer aided design of cable-membrane structures, s.l.: Saxe-Coburg Publications on Computational Engineering.
  • Ulsoy, A, Mote Jr., C., 1982, Vibrations of wide band saw blades, ASME, 104, 71-78.
  • Wang, Y.Q., Zu, J.W., 2017, Vibration characteristics of moving sigmoid functionally graded plates containing porosities, Int. J. Mech. Mater. Des., 1-17.
  • Wattanasakulpong, N., Gangadhara Prusty, B., Kelly,.W., Hoffman, M., 2012, Free vibration analysis of layered functionally graded beams with experimental validation, Mater. Des. 36, 182-190.
  • Wattanasakulpong, N., Chaikittiratana, A., 2015, Flexural Vibration of imperfect functionally graded beams based on timoshenko beam theory: Chebyshev collocation method, Meccanica, 50, 1331-1342.
  • Wattanasakulpong, N., Ungbhakorn, V., 2014, Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities, Aerosp. Sci. Tech., 1, 111-120.
  • Yang, X., Zhang, W., Chen, L., Yao, M., 2012, Dynamical analysis of axially moving plate by finite difference method, Nonlinear Dyn., 67, 997-1006.
  • Yao, G., Zhang, Y.-M., 2016, Dynamics and stability of an axially moving plate interacting with surrounding airflow, Meccanica, 51, 2111-2119.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0fff566c-0950-4179-9945-9031e3a7cea1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.