Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 1 | art. no. e45, 2022
Tytuł artykułu

Experimental study on flexural behaviour of reinforced concrete beams strengthened with passive and active CFRP strips using a novel anchorage system

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the research on reinforced concrete (RC) beams strengthened with carbon fibre reinforced polymer (CFRP) strips with various configurations in terms of anchoring and tensioning. The five full-scale RC beams with the total length of 6.0 m were strengthened with passive strips, without and with mechanical anchorages at their ends, as well as with strips tensioned by the novel prestressing system with three various prestressing levels ranging from 30 to 50% of the CFRP tensile strength. All RC beams were tested under static flexural load up to failure and they were investigated in a full range of flexural behaviour, including the post-debonding phase. The main parameters considered in this study include the use of mechanical anchorages, the effect of tensioning the strips and the influence of the various prestressing levels. Several performance indicators have been established to evaluate the beams’ behaviour. The study revealed that the RC beams strengthened using tensioned CFRP strips exhibited a higher cracking, yielding and ultimate moments as compared to the beams with passively bonded CFRP strips. Moreover, increasing the beams’ prestressing level has a significant positive influence on the performance of strengthened beams. However, it did not affect the ultimate load-bearing capacity of the beams. The optimal prestressing level for the novel system has been determined as 60% of CFRP tensile strength.
Słowa kluczowe
Wydawca

Rocznik
Strony
art. no. e45, 2022
Opis fizyczny
Bibliogr. 41 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Roads and Bridges, Rzeszow University of Technology, Al. Powstancow Warszawy 12, Rzeszow, Poland, piatek@prz.edu.pl
  • Department of Roads and Bridges, Rzeszow University of Technology, Al. Powstancow Warszawy 12, Rzeszow, Poland, siwowski@prz.edu.pl
Bibliografia
  • 1. Saadatmanesh H, Ehsani MR. RC beams strengthened with GFRP plates. I: experimental study. J Struct Eng. 1991;117(11):3417–33. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:11(3417).
  • 2. Triantafillou TC, Deskovic N, Deuring M. Strengthening of concrete structures with prestressed fiber reinforced plastic sheets. ACI Struct J. 1992;89(3):235–44.
  • 3. Hollaway LC, Teng JG. Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites. Cambridge: Woodhead Publishing; 2008.
  • 4. Wu HC, Eamon CD. Strengthening of concrete structures using fiber reinforced polymers (FRP): design, construction and practical applications. Cambridge: Woodhead Publishing; 2017.
  • 5. Meier U. Strengthening of structures using carbon fibre/epoxy composites. Constr Build Mater. 1995;9(6):341–51. https://doi.org/10.1016/0950-0618(95)00071-2.
  • 6. Hollaway LC. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr Build Mater. 2010;24(12):2419–45. https:// doi. org/ 10. 1016/j. conbu ildmat. 2010.04.062.
  • 7. Garden HN, Hollaway LC. An experimental study of the influence of plate end anchorage of carbon fibre composite plates used to strengthen reinforced concrete beams. Compos Struct. 1998;42(2):175–88. https:// doi. org/ 10. 1016/ S0263- 8223(98)00070-1.
  • 8. Qeshta IM, Shafigh P, Jumaat MZ. Research progress on the flexural behaviour of externally bonded RC beams. Arch Civ Mech Eng. 2016;16(4):982–1003. https:// doi. org/ 10. 1016/j.acme.2016.07.002.
  • 9. Jankowiak I. Analysis of RC beams strengthened by CFRP strips—experimental and FEA study. Arch Civ Mech Eng. 2012;12(3):376–88. https:// doi. org/ 10. 1016/j. acme. 2012. 06.010.
  • 10. Derkowski W. Fatigue life of reinforced concrete beams under bending strengthened with composite materials. Arch Civ Mech Eng. 2006;6(4):33–47. https://doi.org/10.1016/S1644-9665(12)60274-X.
  • 11. Deng J, Rashid K, Li X, Xie Y, Chen S. Comparative study on prestress loss and flexural performance of rectangular and T beam strengthened by prestressing CFRP plate. Compos Struct. 2021;262: 113340. https:// doi. org/ 10. 1016/j. comps truct. 2020.113340.
  • 12. Jumaat MZ, Rahman MM, Rahman MA. Review on bonding techniques of CFRP in strengthening concrete structures. Int J Phys Sci. 2011;6(15):3567–75. https://doi.org/10.5897/IJPS10.376.
  • 13. Aslam M, Shafigh P, Jumaat MZ, Shah SNR. Strengthening of RC beams using prestressed fiber-reinforced polymers—a review. Constr Build Mater. 2015;82:235–56. https://doi.org/10.1016/j.conbuildmat.2015.02.051.
  • 14. Mohee FM, Al-Mayah A, Plumtree A. Anchors for CFRP plates: state-of-the-art review and future potential. Compos B Eng. 2016;90:432–42. https://doi.org/10.1016/j.compositesb.2016.01.011.
  • 15. Kalfat R, Al-Mahaidi R, Smith S. Anchorage devices used to improve the performance of reinforced concrete beams retrofitted with FRP composites: a-state-of-the-art-review. J Compos Constr. 2013;17(1):14–33. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000276.
  • 16. Andrä H-P, Maier M. Post-strengthening with externally bonded prestressed CFRP strips. In IABSE Congress Report. International Association for Bridge and Structural Engineering, 2000 (p1507–1514).
  • 17. Berset T, Schwegler G, Trausch L. Verstärkung einer auto-bahnbrücke mit vorgespannten CFK-lamellen [strengthening of a motorway bridge with prestressed CFRP strips]. Tec21. 2002;128(22):22–9. https:// doi. org/ 10. 5169/ seals- 80433 (in German).
  • 18. Suter R, Jungo D. Vorgespannte CFK-Lamellen zur Verstärkung von Bauwerken [Prestressed CFRP strips for strengthening struc-tures]. Beton-und Stahlbetonbau. 2001;96(5):350–8. https://doi.org/10.1002/best.200100370 (in German).
  • 19. Correia L, Teixeira T, Michels J, Almeida JA, Sena-Cruz J. Flexural behaviour of RC slabs strengthened with prestressed CFRP strips using different anchorage systems. Compos B Eng. 2015;81:158–70. https://doi.org/10.1016/j.compositesb.2015.07.011.
  • 20. Yang J, Haghani R, Al-Emrani M. Innovative prestressing method for externally bonded CFRP laminates without mechanical anchorage. Eng Struct. 2019;197: 109416. https://doi.org/10.1016/j.engstruct.2019.109416.
  • 21. Woo SK, Nam JW, Kim JHJ, Han SH, Byun KJ. Suggestion of flexural capacity evaluation and prediction of prestressed CFRP strengthened design. Eng Struct. 2008;30(12):3751–63. https://doi.org/10.1016/j.engstruct.2008.06.013.
  • 22. Yang DS, Park SK, Neale KW. Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites. Compos Struct. 2009;88(497):508. https://doi.org/10.1016/j.compstruct.2008.05.016.
  • 23. Yu P, Silva PF, Nanni A. Flexural strength of reinforced concrete beams strengthened with prestresses carbon fiber-reinforced polymer sheets—part II. ACI Struct J. 2008;105(1):11–20.
  • 24. You YC, Choi KS, Kim JH. An experimental investigation on flexural behaviour of RC beams strengthened with prestressed CFRP strips using a durable anchorage system. Compos B Eng. 2012;43(8):3026–36. https://doi.org/10.1016/j.compositesb.2012.05.030.
  • 25. Kałuża M, Ajdukiewicz A. Comparison of behaviour of concrete beams with passive and active strengthening by means of CFRP strips. ACEE J Arch Civ Eng Env. 2008;1(2):51–64.
  • 26. Kotynia R, Walendziak R, Stoecklin I, Meier U. RC slabs strengthened with prestressed and gradually anchored CFRP strips under monotonic and cyclic loading. J Compos Constr. 2010;15(2):168–80. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000081.
  • 27. Piątek B, Siwowski T, Michałowski J, Błażewicz S. Flexural strengthening of RC beams with prestressed CFRP strips: development of novel anchor and tensioning system. J Compos Constr. 2020;24(3):04020015. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001020.
  • 28. Siddika A, Al Mamun MA, Alyousef R, Amran YM. Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: a review. J Build Eng. 2019;25: 100798. https://doi.org/10.1016/j.jobe.2019.100798.
  • 29. Kim YJ, Wight RG, Green MF. Flexural strengthening of RC beams with prestressed CFRP sheets: development of nonmetallic anchor systems. J Compos Constr. 2008;12(1):35–43. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:1(35).
  • 30. Siwowski T, Michalowski J, Blazewicz S. Nowy system sprężania taśm kompozytowych CFRP do wzmacniania konstrukcji żelbetowych [the new CFRP prestressing system for strengthening concrete structures]. Inżynieria i Budownictwo. 2010;66:152–6 (in Polish).
  • 31. Siwowski T, Piątek B, Siwowska P, Wiater A. Development and implementation of CFRP post-tensioning system for bridge strengthening. Eng Str. 2020;207: 110266. https:// doi. org/ 10.1016/j.engstruct.2020.110266.
  • 32. CEN (European Committee for Standardization). EN 206. Concrete—specification, performance, production and conformity. Brussels: CEN; 2013.
  • 33. CEN (European Committee for Standardization). EN 1992-1-1. Eurocode 2: design of concrete structures—part 1–1: General rules and rules for buildings. Brussels: CEN; 2008.
  • 34. CEN (European Committee for Standardization). EN 10002-1. Metallic materials—tensile testing—part 1: method of test at ambient temperature. Brussels: CEN; 2008.
  • 35. ISO (International Organization for Standardization). ISO 527. Plastics—determination of tensile properties. Geneva: ISO; 2012.
  • 36. CEN (European Committee for Standardization). EN 1465. Adhesives. Determination of tensile lap—shear strength of bonded assemblies. Brussels: CEN; 2009.
  • 37. Piątek B, Siwowski T, Michałowski J, Błażewicz S. Development of bonded/riveted steel anchorages of prestressed CFRP strips for concrete strengthening. Materials. 2020;13(10):2217. https://doi.org/10.3390/ma13102217.
  • 38. Piątek B, Siwowski T, Michałowski J, Błażewicz S. Experimental research on hybrid anchorages of prestressed composite strips for structural strengthening. J Compos Mater. 2021;55(24):3539–50. https://doi.org/10.1177/00219983211020349.
  • 39. CEN (European Committee for Standardization). EN 1990. Eurocode: basis of structural design. Brussels: CEN; 2004.
  • 40. CEN (European Committee for Standardization). EN 1991. Eurocode: actions on structures. Brussels: CEN; 2004.
  • 41. Kotynia R. FRP composites for flexural strengthening of concrete structures: theory, testing, design. Lodz: Lodz University of Technology; 2019.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0fea5336-0897-488d-a7fc-bc6891a638b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.