Czasopismo
2012
|
Vol. 60, no 3
|
295--306
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Certain results on extending maps taking values in Hilbert manifolds by maps which are close to being embeddings are presented. Sufficient conditions on a map under which it is extendable by an embedding are given. In particular, it is shown that if X is a completely metrizable space of topological weight not greater than α≥ℵ0, A is a closed set in X and f:X→M is a map into a manifold M modelled on a Hilbert space of dimension α such that f(X∖A)∩f(∂A)=∅, then for every open cover U of M there is a map g:X→M which is U-close to f (on X), coincides with f on A and is an embedding of X∖A into M. If, in addition, X∖A is a connected manifold modelled on the same Hilbert space as M, and f(∂A) is a Z-set in M, then the above map g may be chosen so that g|X∖A be an open embedding.
Słowa kluczowe
Rocznik
Tom
Strony
295--306
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Instytut Matematyki Wydział Matematyki i Informatyki Uniwersytet Jagiellonski Łojasiewicza 6 30-348 Kraków, Poland, piotr.niemiec@uj.edu.pl
Bibliografia
- [1] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383.
- [2] R. D. Anderson and J. D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283–289.
- [3] M. Bestvina, P. Bowers, J. Mogilski and J. Walsh, Characterization of Hilbert space manifolds revisited, Topology Appl. 24 (1986), 53–69.
- [4] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291–313.
- [5] P. L. Bowers, Limitation topologies on function spaces, Trans. Amer. Math. Soc. 314 (1989), 421–431.
- [6] J. J. Dijkstra, Strong negligibility of Ϭ-compacta does not characterize Hilbert space, Pacific J. Math. 127 (1987), 19–30.
- [7] J. J. Dijkstra, Characterizing Hilbert space topology in terms of strong negligibility, Compos. Math. 75 (1990), 299–306.
- [8] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 57 (1965), 187–193.
- [9] R. H. Fox, On fibre spaces, II, Bull. Amer. Math. Soc. 49 (1943), 733–735.
- [10] D. W. Henderson, Z-sets in ANR’s, Trans. Amer. Math. Soc. 213 (1975), 205–216.
- [11] D. W. Henderson and R. Schori, Topological classification of infinite dimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1970), 121–124.
- [12] J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. 54 (1951), 425–505.
- [13] H. Torunczyk, Remarks on Anderson’s paper “On topological infinite deficiency”, Fund. Math. 66 (1970), 393–401.
- [14] H. Torunczyk, Concerning locally homotopy negligible sets and characterization of `2-manifolds, Fund. Math. 101 (1978), 93–110.
- [15] H. Torunczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247–262.
- [16] H. Torunczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985), 89–93.
- [17] J. E.West, Approximating homotopies by isotopies in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 1254–1257.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-0fbdde8b-6809-4bc9-8393-6474df4660fb