Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 60, no 3 | 295--306
Tytuł artykułu

Extending Maps in Hilbert Manifolds

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Certain results on extending maps taking values in Hilbert manifolds by maps which are close to being embeddings are presented. Sufficient conditions on a map under which it is extendable by an embedding are given. In particular, it is shown that if X is a completely metrizable space of topological weight not greater than α≥ℵ0, A is a closed set in X and f:X→M is a map into a manifold M modelled on a Hilbert space of dimension α such that f(X∖A)∩f(∂A)=∅, then for every open cover U of M there is a map g:X→M which is U-close to f (on X), coincides with f on A and is an embedding of X∖A into M. If, in addition, X∖A is a connected manifold modelled on the same Hilbert space as M, and f(∂A) is a Z-set in M, then the above map g may be chosen so that g|X∖A be an open embedding.
Wydawca

Rocznik
Strony
295--306
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Instytut Matematyki Wydział Matematyki i Informatyki Uniwersytet Jagiellonski Łojasiewicza 6 30-348 Kraków, Poland, piotr.niemiec@uj.edu.pl
Bibliografia
  • [1] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383.
  • [2] R. D. Anderson and J. D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283–289.
  • [3] M. Bestvina, P. Bowers, J. Mogilski and J. Walsh, Characterization of Hilbert space manifolds revisited, Topology Appl. 24 (1986), 53–69.
  • [4] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291–313.
  • [5] P. L. Bowers, Limitation topologies on function spaces, Trans. Amer. Math. Soc. 314 (1989), 421–431.
  • [6] J. J. Dijkstra, Strong negligibility of Ϭ-compacta does not characterize Hilbert space, Pacific J. Math. 127 (1987), 19–30.
  • [7] J. J. Dijkstra, Characterizing Hilbert space topology in terms of strong negligibility, Compos. Math. 75 (1990), 299–306.
  • [8] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 57 (1965), 187–193.
  • [9] R. H. Fox, On fibre spaces, II, Bull. Amer. Math. Soc. 49 (1943), 733–735.
  • [10] D. W. Henderson, Z-sets in ANR’s, Trans. Amer. Math. Soc. 213 (1975), 205–216.
  • [11] D. W. Henderson and R. Schori, Topological classification of infinite dimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1970), 121–124.
  • [12] J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. 54 (1951), 425–505.
  • [13] H. Torunczyk, Remarks on Anderson’s paper “On topological infinite deficiency”, Fund. Math. 66 (1970), 393–401.
  • [14] H. Torunczyk, Concerning locally homotopy negligible sets and characterization of `2-manifolds, Fund. Math. 101 (1978), 93–110.
  • [15] H. Torunczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247–262.
  • [16] H. Torunczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985), 89–93.
  • [17] J. E.West, Approximating homotopies by isotopies in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 1254–1257.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0fbdde8b-6809-4bc9-8393-6474df4660fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.