Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 20, no. 4 | 166--173
Tytuł artykułu

Rheological and deformation behavior of natural smart suspensions exhibiting shear thickening properties

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shear thickening fluid (STF) is a very interesting and promising material in several application fields where a different mechanical is demanded based on loading rates, like body armor and vibration insulators. Cork is a natural cellular material by excellence, filled with well-known beneficial effects in terms of insulation and also interesting crashworthiness properties. In this work, cork grains of very small size (0.5–1.0 mm) are added to two different shear thickening suspensions, one of them a fully natural water and cornstarch, and the other based on fumed silica and polyethylene glycol. The rheology of these eco-friendly suspensions was investigated and the influences of including cork grains were discussed. In addition, microscopic analyses were carried out to observe the deformations at each component during the shear thickening phenomenon. Cork grains reduce the load-carrying capacity in the suspensions due to the deformable characteristics of cork. For this reason, shear thickening properties are suppressed in the mixtures. Despite this, it is possible to state that viscosity increase in the mixtures leads to strong particle contacts, and thereby resulting in particle deformations in the main constituent powder as well as in the cork additives due to their softer structures.
Wydawca

Rocznik
Strony
166--173
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
  • TEMA, Center of Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
Bibliografia
  • [1] Cwalina CD, Dombrowski RD, McCutcheon CJ, Christiansen EL, Wagner NJ. MMOD puncture resistance of EVA suits with shear thickening fluid (STF)-armortm absorber layers. Procedia Eng. 2015;103:97–104. https ://doi.org/10.1016/j.proen g.2015.04.014.
  • [2] Gürgen S. An investigation on composite laminates including shear thickening fluid under stab condition. J Compos Mater. 2019;53(8):1111–22. https ://doi.org/10.1177/00219 98318 796158.
  • [3] Gürgen S, Kuşhan MC. The stab resistance of fabrics impregnatem with shear thickening fluids including various particle size of additives. Compos Part Appl Sci Manuf. 2017;94:50–60. https ://doi.org/10.1016/j.compo sites a.2016.12.019.
  • [4] Gürgen S, Kuşhan MC. The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics. Mech Adv Mater Struct. 2017;24(16):1381–90. https ://doi.org/10.1080/15376 494.2016.12313 55.
  • [5] Xu Y, Chen X, Wang Y, Yuan Z. Stabbing resistance of body armour panels impregnated with shear thickening fluid. Campos Struct. 2017;163:465–73. https ://doi.org/10.1016/j.comps truct.2016.12.056.
  • [6] Majumdar A, Butola BS, Srivastava A. Development of soft composite materials with improved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid. Mater Des 1980–2015. 2014;54:295–300. https ://doi.org/10.1016/j.matde s.2013.07.086.
  • [7] Gürgen S, Kuşhan MC. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym Test. 2017;64:296–306. https ://doi.org/10.1016/j.polymertes ting.2017.11.003.
  • [8] Wei M, Lin K, Guo Q. Modeling mechanical properties of a shear thickening fluid damper based on phase transition theory. EPL Europhys Lett. 2018;121(5):50001. https ://doi.org/10.1209/0295-5075/121/50001.
  • [9] Zhang XZ, Li WH, Gong XL. The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper. Smart Mater Struct. 2008;17(3):035027. https ://doi.org/10.1088/0964-1726/17/3/03502 7.
  • [10] Zhou H, Yan L, Jiang W, Xuan S, Gong X. Shear thickening fluid–based energy-free damper: design and dynamic characteristics. J Intell Mater Syst Struct. 2016;27(2):208–20. https ://doi.org/10.1177/10453 89X14 56386 9.
  • [11] Gürgen S, Kuşhan MC, Li W. Shear thickening fluids in protective applications: a review. Prog Polym Sci. 2017;75:48–72. https ://doi.org/10.1016/j.progp olyms ci.2017.07.003.
  • [12] Wei M, Hu G, Jin L, Lin K, Zou D. Forced vibration of a shear thickening fluid sandwich beam. Smart Mater Struct. 2016;25(5):055041. https ://doi.org/10.1088/0964-1726/25/5/05504 1.
  • [13] Gürgen S, Sofuoğlu MA. Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes. Campos Struct. 2019;226:111236. https ://doi.org/10.1016/j.comps truct.2019.11123 6.
  • [14] Gürgen S, Sofuoğlu MA. Vibration attenuation of sandwich structures filled with shear thickening fluids. Compos Part B Eng. 2020;186:107831. https ://doi.org/10.1016/j.compo sites b.2020.10783 1.
  • [15] Gürgen S, Sofuoğlu MA. Integration of shear thickening fluid into cutting tools for improved turning operations. J Manuf Process. 2020;56:1146–54. https ://doi.org/10.1016/j.jmapr o.2020.06.012.
  • [16] Span J, Koshy P, Klocke F, Müller S, Coelho R. Dynamic jamming in dense suspensions: surface finishing and edge honing applications. CIRP Ann. 2017;66(1):321–4. https ://doi.org/10.1016/j.cirp.2017.04.082.
  • [17] Li M, Lyu B, Yuan J, Yao W, Zhou F, Zhong M. Evolution and equivalent control law of surface roughness in shear-thickening polishing. Int J Mach Tools Manuf. 2016;108:113–26. https ://doi.org/10.1016/j.ijmac htool s.2016.06.007.
  • [18] Li M, Lyu B, Yuan J, Dong C, Dai W. Shear-thickening polishing method. Int J Mach Tools Manuf. 2015;94:88–99. https ://doi.org/10.1016/j.ijmac htool s.2015.04.010.
  • [19] Gürgen S, Sert A. Polishing operation of a steel bar in a shear thickening fluid medium. Compos Part B Eng. 2019;175:107127. https ://doi.org/10.1016/j.compo sites b.2019.10712 7.
  • [20] Gürgen S, Li W, Kuşhan MC. The rheology of shear thickening fluids with various ceramic particle additives. Mater Des. 2016;104:312–9. https ://doi.org/10.1016/j.matde s.2016.05.055.
  • [21] Gürgen S, Kuşhan MC, Li W. The effect of carbide particle additives on rheology of shear thickening fluids. Korea–Aust Rheol J. 2016;28(2):121–8. https ://doi.org/10.1007/s1336 7-016-0011-x.
  • [22] Gürgen S. Tuning the rheology of nano-sized silica suspensions with silicon nitride particles. J Nano Res. 2019;56:63–70. https ://doi.org/10.4028/www.scien tific .net/JNano R.56.63.
  • [23] Gürgen S, Sofuoğlu MA, Kuşhan MC. Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater Struct. 2019;28(3):035027. https ://doi.org/10.1088/1361-665X/ab018 c.
  • [24] Laha A, Majumdar A. Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics. Appl Clay Sci. 2016;132–133:468–74. https ://doi.org/10.1016/j.clay.2016.07.017.
  • [25] Hasanzadeh M, Mottaghitalab V. Tuning of the rheological properties of concentrated silica suspensions using carbon nanotubes. Rheol Acta. 2016;55(9):759–66. https ://doi.org/10.1007/s00397-016-0950-7.
  • [26] Sha X, Yu K, Cao H, Qian K. Shear thickening behavior of nanoparticle suspensions with carbon nanofillers. J Nanoparticle Res. 2013;15(7):1816. https ://doi.org/10.1007/s1105 1-013-1816-x.
  • [27] Gil L. New Cork-based materials and applications. Materials. 2015;8(2):625–37. https ://doi.org/10.3390/ma802 0625.
  • [28] Fernandes F, Alves de Sousa R, Ptak M, Migueis G. Helmet design based on the optimization of biocomposite energy-absorbing liners under multi-impact loading. Appl Sci. 2019;9(4):735. https ://doi.org/10.3390/app90 40735.
  • [29] Santos PT, Pinto S, Marques PAAP, Pereira AB, Alves de Sousa RJ. Agglomerated cork: a way to tailor its mechanical properties. Compos Struct. 2017;178:277–87. https ://doi.org/10.1016/j.comps truct .2017.07.035.
  • [30] Kaczyński P, Ptak M, Fernandes FAO, Chybowski L, Wilhelm J, Alves de Sousa RJ. Development and testing of advanced Cork composite sandwiches for energy-absorbing structures. Materials. 2019;12(5):697. https ://doi.org/10.3390/ma120 50697.
  • [31] Amorim Cork Composites. https ://www.amori mcork .com/en/natur al-cork/cork-and-other -applications/. Accessed 09 May 2019.
  • [32] D. Kukich. Put a cork in it: Research details quiet composite material. ScienceDaily. https ://www.scien cedai ly.com/releases/2012/06/12062 21629 46.htm. Accessed 08 Sept 2020.
  • [33] Mari R, Seto R, Morris JF, Denn MM. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Proc Natl Acad Sci. 2015;112(50):15326–30. https ://doi.org/10.1073/pnas.15154 77112 .
  • [34] Pednekar S, Chun J, Morris JF. Simulation of shear thickening in attractive colloidal suspensions. Soft Matter. 2017;13(9):1773–9. https ://doi.org/10.1039/C6SM0 2553F.
  • [35] Anjos O, Pereira H, Rosa ME. Effect of quality, porosity and density on the compression properties of cork. Holz Als Roh-Werkst. 2008;66(4):295–301. https ://doi.org/10.1007/s0010 7-008-0248-2.
  • [36] Pharr GM. Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng A. 1998;253(1–2):151–9. https://doi.org/10.1016/S0921 -5093(98)00724 -2.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-0fb85cc9-1c57-456c-8268-f1cd7b6ff2be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.